西西河

主题:【史话】决战紫禁之巅之爱玻之战(5-4)(5-5) -- jlanu

共:💬40 🌺1
全看树展主题 · 分页首页 上页
/ 3
下页 末页
家园 【史话】决战紫禁之巅之爱玻之战(5-4)(5-5)

前面部分

http://www.cchere.com/article/115;ID=106476

第五章 曙光

从赫尔格兰回来后,海森堡找到波恩,请求允许他离开哥廷根一阵,去剑桥讲课。同时,

他也把自己的论文给了波恩过目,问他有没有发表的价值。波恩显然被海森堡的想法给迷

住了,正如他后来回忆的那样:“我对此着了迷……海森堡的思想给我留下了深刻的印象

,对于我们一直追求的那个体系来说,这是一次伟大的突破。” 于是当海森堡去到英国

讲学的时候,波恩就把他的这篇论文寄给了《物理学杂志》(Zeitschrift fur Physik)

,并于7月29日发表。这无疑标志着新生的量子力学在公众面前的首次亮相。

但海森堡古怪的表格乘法无疑也让波恩困扰,他在7月15日写给爱因斯坦的信中说:“海

森堡新的工作看起来有点神秘莫测,不过无疑是很深刻的,而且是正确的。”但是,有一

天,波恩突然灵光一闪:他终于想起来这是什么了。海森堡的表格,正是他从前所听说过

的那个“矩阵”!

但是对于当时的欧洲物理学家来说,矩阵几乎是一个完全陌生的名字。甚至连海森堡自己

,也不见得对它的性质有着完全的了解。波恩决定为海森堡的理论打一个坚实的数学基础

,他找到泡利,希望与之合作,可是泡利对此持有强烈的怀疑态度,他以他标志性的尖刻

语气对波恩说:“是的,我就知道你喜欢那种冗长和复杂的形式主义,但你那无用的数学

只会损害海森堡的物理思想。”波恩在泡利那里碰了一鼻子灰,不得不转向他那熟悉矩阵

运算的年轻助教约尔当(Pascual Jordan,再过一个礼拜,就是他101年诞辰),两人于是

欣然合作,很快写出了著名的论文《论量子力学》(Zur Quantenmechanik),发表在《

物理学杂志》上。在这篇论文中,两人用了很大的篇幅来阐明矩阵运算的基本规则,并把

经典力学的哈密顿变换统统改造成为矩阵的形式。传统的动量p和位置q这两个物理变量,

现在成为了两个含有无限数据的庞大表格,而且,正如我们已经看到的那样,它们并不遵

守传统的乘法交换率,p×q ≠ q×p。

波恩和约尔当甚至把p×q和q×p之间的差值也算了出来,结果是这样的:

pq ?C qp = (h/2πi) I

h是我们已经熟悉的普朗克常数,i是虚数的单位,代表-1的平方根,而I叫做单位矩阵,

相当于矩阵运算中的1。波恩和约尔当奠定了一种新的力学――矩阵力学的基础。在这种

新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来

,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,

牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实

是牛顿理论的一个扩展,老的经典力学其实被“包含”在我们的新力学中,成为一种特殊

情况下的表现形式。

这种新的力学很快就得到进一步完善。从剑桥返回哥廷根后,海森堡本人也加入了这个伟

大的开创性工作中。11月26日,《论量子力学II》在《物理学杂志》上发表,作者是波恩

,海森堡和约尔当。这篇论文把原来只讨论一个自由度的体系扩展到任意个自由度,从而

彻底建立了新力学的主体。现在,他们可以自豪地宣称,长期以来人们所苦苦追寻的那个

目标终于达到了,多年以来如此困扰着物理学家的原子光谱问题,现在终于可以在新力学

内部完美地解决。《论量子力学II》这篇文章,被海森堡本人亲切地称呼为“三人论文”

(Dreimannerarbeit)的,也终于注定要在物理史上流芳百世。

新体系显然在理论上获得了巨大的成功。泡利很快就改变了他的态度,在写给克罗尼格(

Ralph Laer Kronig)的信里,他说:“海森堡的力学让我有了新的热情和希望。”随后

他很快就给出了极其有说服力的证明,展示新理论的结果和氢分子的光谱符合得非常完美

,从量子规则中,巴尔末公式可以被自然而然地推导出来。非常好笑的是,虽然他不久前

还对波恩咆哮说“冗长和复杂的形式主义”,但他自己的证明无疑动用了最最复杂的数学

不过,对于当时其他的物理学家来说,海森堡的新体系无疑是一个怪物。矩阵这种冷冰冰

的东西实在太不讲情面,不给人以任何想象的空间。人们一再追问,这里面的物理意义是

什么?矩阵究竟是个什么东西?海森堡却始终护定他那让人沮丧的立场:所谓“意义”是

不存在的,如果有的话,那数学就是一切“意义”所在。物理学是什么?就是从实验观测

量出发,并以庞大复杂的数学关系将它们联系起来的一门科学,如果说有什么图像能够让

人们容易理解和记忆的话,那也是靠不住的。但是,不管怎么样,毕竟矩阵力学对于大部

分人来说都太陌生太遥远了,而隐藏在它背后的深刻含义,当时还远远没有被发掘出来。

特别是,p×q ≠ q×p,这究竟代表了什么,令人头痛不已。

一年后,当薛定谔以人们所喜闻乐见的传统方式发布他的波动方程后,几乎全世界的物理

学家都松了一口气:他们终于解脱了,不必再费劲地学习海森堡那异常复杂和繁难的矩阵

力学。当然,人人都必须承认,矩阵力学本身的伟大含义是不容怀疑的。

但是,如果说在1925年,欧洲大部分物理学家都还对海森堡,波恩和约尔当的力学一知半

解的话,那我们也不得不说,其中有一个非常显著的例外,他就是保罗•狄拉克。

在量子力学大发展的年代,哥本哈根,哥廷根以及慕尼黑三地抢尽了风头,狄拉克的崛起

总算也为老牌的剑桥挽回了一点颜面。

保罗•埃德里安•莫里斯•狄拉克(Paul Adrien Maurice

Dirac)于1902年8月8日出生于英国布里斯托尔港。他的父亲是瑞士人,当时是一位法语

教师,狄拉克是家里的第二个孩子。许多大物理学家的童年教育都是多姿多彩的,比如玻

尔,海森堡,还有薛定谔。但狄拉克的童年显然要悲惨许多,他父亲是一位非常严肃而刻

板的人,给保罗制定了众多的严格规矩。比如他规定保罗只能和他讲法语(他认为这样才

能学好这种语言),于是当保罗无法表达自己的时候,只好选择沉默。在小狄拉克的童年

里,音乐、文学、艺术显然都和他无缘,社交活动也几乎没有。这一切把狄拉克塑造成了

一个沉默寡言,喜好孤独,淡泊名利,在许多人眼里显得geeky的人。有一个流传很广的

关于狄拉克的笑话是这样说的:有一次狄拉克在某大学演讲,讲完后一个观众起来说:“

狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主

持人不得不提醒他,他还没有回答问题。

“回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”

1921年,狄拉克从布里斯托尔大学电机工程系毕业,恰逢经济大萧条,结果没法找到工作

。事实上,很难说他是否会成为一个出色的工程师,狄拉克显然长于理论而拙于实验。不

过幸运的是,布里斯托尔大学数学系又给了他一个免费进修数学的机会,2年后,狄拉克

转到剑桥,开始了人生的新篇章。

我们在上面说到,1925年秋天,当海森堡在赫尔格兰岛作出了他的突破后,他获得波恩的

批准来到剑桥讲学。当时海森堡对自己的发现心中还没有底,所以没有在公开场合提到自

己这方面的工作,不过7月28号,他参加了所谓“卡皮察俱乐部”的一次活动。卡皮察(P

.L.Kapitsa)是一位年轻的苏联学生,当时在剑桥跟随卢瑟福工作。他感到英国的学术活

动太刻板,便自己组织了一个俱乐部,在晚上聚会,报告和讨论有关物理学的最新进展。

我们在前面讨论卢瑟福的时候提到过卡皮察的名字,他后来也获得了诺贝尔奖。

狄拉克也是卡皮察俱乐部的成员之一,他当时不在剑桥,所以没有参加这个聚会。不过他

的导师福勒(William Alfred Fowler)参加了,而且大概在和海森堡的课后讨论中,得

知他已经发明了一种全新的理论来解释原子光谱问题。后来海森堡把他的证明寄给了福勒

,而福勒给了狄拉克一个复印本。这一开始没有引起狄拉克的重视,不过大概一个礼拜后

,他重新审视海森堡的论文,这下他把握住了其中的精髓:别的都是细枝末节,只有一件

事是重要的,那就是我们那奇怪的矩阵乘法规则:p×q ≠ q×p。

*********

饭后闲话:约尔当

恩斯特•帕斯库尔•约尔当(Ernst Pascual Jordan)出生于汉诺威。在我们

的史话里已经提到,他是物理史上两篇重要的论文《论量子力学》I和II的作者之一,可

以说也是量子力学的主要创立者。但是,他的名声显然及不上波恩或者海森堡。

这里面的原因显然也是多方面的,1925年,约尔当才22岁,无论从资格还是名声来说,都

远远及不上元老级的波恩和少年成名的海森堡。当时和他一起做出贡献的那些人,后来都

变得如此著名:波恩,海森堡,泡利,他们的光辉耀眼,把约尔当完全给盖住了。

从约尔当本人来说,他是一个害羞和内向的人,说话有口吃的毛病,总是结结巴巴的,所

以他很少授课或发表演讲。更严重的是,约尔当在二战期间站到了希特勒的一边,成为一

个纳粹的同情者,被指责曾经告密。这大大损害了他的声名。

约尔当是一个作出了许多伟大成就的科学家。除了创立了基本的矩阵力学形式,为量子论

打下基础之外,他同样在量子场论,电子自旋,量子电动力学中作出了巨大的贡献。他是

最先证明海森堡和薛定谔体系同等性的人之一,他发明了约尔当代数,后来又广泛涉足生

物学、心理学和运动学。他曾被提名为诺贝尔奖得主,却没有成功。约尔当后来显然也对

自己的成就被低估有些恼火,1964年,他声称《论量子力学》一文其实几乎都是他一个人

的贡献――波恩那时候病了。这引起了广泛的争议,不过许多人显然同意,约尔当的贡献

应当得到更多的承认。

p×q ≠ q×p。如果说狄拉克比别人天才在什么地方,那就是他可以一眼就看出这才是海

森堡体系的精髓。那个时候,波恩和约尔当还在苦苦地钻研讨厌的矩阵,为了建立起新的

物理大厦而努力地搬运着这种庞大而又沉重的表格式方砖,而他们的文章尚未发表。但狄

拉克是不想做这种苦力的,他轻易地透过海森堡的表格,把握住了这种代数的实质。不遵

守交换率,这让我想起了什么?狄拉克的脑海里闪过一个名词,他以前在上某一门动力学

课的时候,似乎听说过一种运算,同样不符合乘法交换率。但他还不是十分确定,他甚至

连那种运算的定义都给忘了。那天是星期天,所有的图书馆都关门了,这让狄拉克急得像

热锅上的蚂蚁。第二天一早,图书馆刚刚开门,他就冲了进去,果然,那正是他所要的东

西:它的名字叫做“泊松括号”。

我们还在第一章讨论光和菲涅尔的时候,就谈到过泊松,还有著名的泊松光斑。泊松括号

也是这位法国科学家的杰出贡献,不过我们在这里没有必要深入它的数学意义。总之,狄

拉克发现,我们不必花九牛二虎之力去搬弄一个晦涩的矩阵,以此来显示和经典体系的决

裂。我们完全可以从经典的泊松括号出发,建立一种新的代数。这种代数同样不符合乘法

交换率,狄拉克把它称作“q数”(q表示“奇异”或者“量子”)。我们的动量、位置、

能量、时间等等概念,现在都要改造成这种q数。而原来那些老体系里的符合交换率的变

量,狄拉克把它们称作“c数”(c代表“普通”)。

“看。”狄拉克说,“海森堡的最后方程当然是对的,但我们不用他那种大惊小怪,牵强

附会的方式,也能够得出同样的结果。用我的方式,同样能得出xy-yx的差值,只不过把

那个让人看了生厌的矩阵换成我们的经典泊松括号[x,y]罢了。然后把它用于经典力学的

哈密顿函数,我们可以顺理成章地导出能量守恒条件和玻尔的频率条件。重要的是,这清

楚地表明了,我们的新力学和经典力学是一脉相承的,是旧体系的一个扩展。c数和q数,

可以以清楚的方式建立起联系来。”

狄拉克把论文寄给海森堡,海森堡热情地赞扬了他的成就,不过带给狄拉克一个糟糕的消

息:他的结果已经在德国由波恩和约尔当作出了,是通过矩阵的方式得到的。想来狄拉克

一定为此感到很郁闷,因为显然他的法子更简洁明晰。随后狄拉克又出色地证明了新力学

和氢分子实验数据的吻合,他又一次郁闷了――泡利比他快了一点点,五天而已。哥廷根

的这帮家伙,海森堡,波恩,约尔当,泡利,他们是大军团联合作战,而狄拉克在剑桥则

是孤军奋斗,因为在英国懂得量子力学的人简直屈指可数。但是,虽然狄拉克慢了那么一

点,但每一次他的理论都显得更为简洁、优美、深刻。而且,上天很快会给他新的机会,

让他的名字在历史上取得不逊于海森堡、波恩等人的地位。

现在,在旧的经典体系的废墟上,矗立起了一种新的力学,由海森堡为它奠基,波恩,约

尔当用矩阵那实心的砖块为它建造了坚固的主体,而狄拉克的优美的q数为它做了最好的

装饰。现在,唯一缺少的就是一个成功的广告和落成典礼,把那些还在旧废墟上唉声叹气

的人们都吸引到新大厦里来定居。这个庆典在海森堡取得突破后3个月便召开了,它的主

题叫做“电子自旋”。

我们还记得那让人头痛的“反常塞曼效应”,这种复杂现象要求引进1/2的量子数。为此

,泡利在1925年初提出了他那著名的“不相容原理”的假设,我们前面已经讨论过,这个

规定是说,在原子大厦里,每一间房间都有一个4位数的门牌号码,而每间房只能入住一

个电子。所以任何两个电子也不能共享同一组号码。

这个“4位数的号码”,其每一位都代表了电子的一个量子数。当时人们已经知道电子有3

个量子数,这第四个是什么,便成了众说纷纭的谜题。不相容原理提出后不久,当时在哥

本哈根访问的克罗尼格(Ralph Kronig)想到了一种可能:就是把这第四个自由度看成电

子绕着自己的轴旋转。他找到海森堡和泡利,提出了这一思路,结果遭到两个德国年轻人

的一致反对。因为这样就又回到了一种图像化的电子概念那里,把电子想象成一个实实在

在的小球,而违背了我们从观察和数学出发的本意了。如果电子真是这样一个带电小球的

话,在麦克斯韦体系里是不稳定的,再说也违反相对论――它的表面旋转速度要高于光速

到了1925年秋天,自旋的假设又在荷兰莱顿大学的两个学生,乌仑贝克(George Eugene

Uhlenbeck)和古德施密特(Somul Abraham Goudsmit)那里死灰复燃了。当然,两人不

知道克罗尼格曾经有过这样的意见,他们是在研究光谱的时候独立产生这一想法的。于是

两人找到导师埃仑费斯特(Paul Ehrenfest)征求意见。埃仑费斯特也不是很确定,他建

议两人先写一个小文章发表。于是两人当真写了一个短文交给埃仑费斯特,然后又去求教

于老资格的洛仑兹。洛仑兹帮他们算了算,结果在这个模型里电子表面的速度达到了光速

的10倍。两人大吃一惊,风急火燎地赶回大学要求撤销那篇短文,结果还是晚了,埃仑费

斯特早就给Nature杂志寄了出去。据说,两人当时懊恼得都快哭了,埃仑费斯特只好安慰

他们说:“你们还年轻,做点蠢事也没关系。”

还好,事情并没有想象的那么糟糕。玻尔首先对此表示赞同,海森堡用新的理论去算了算

结果后,也转变了反对的态度。到了1926年,海森堡已经在说:“如果没有古德施密特,

我们真不知该如何处理塞曼效应。”一些技术上的问题也很快被解决了,比如有一个系数

2,一直和理论所抵触,结果在玻尔研究所访问的美国物理学家托马斯发现原来人们都犯

了一个计算错误,而自旋模型是正确的。很快海森堡和约尔当用矩阵力学处理了自旋,结

果大获全胜,很快没有人怀疑自旋的正确性了。

哦,不过有一个例外,就是泡利,他一直对自旋深恶痛绝。在他看来,原本电子已经在数

学当中被表达得很充分了――现在可好,什么形状、轨道、大小、旋转……种种经验性的

概念又幽灵般地回来了。原子系统比任何时候都像个太阳系,本来只有公转,现在连自转

都有了。他始终按照自己的路子走,决不向任何力学模型低头。事实上,在某种意义上泡

利是对的,电子的自旋并不能想象成传统行星的那种自转,它具有1/2的量子数,也就是

说,它要转两圈才露出同一个面孔,这里面的意义只能由数学来把握。后来泡利真的从特

定的矩阵出发,推出了这一性质,而一切又被伟大的狄拉克于1928年统统包含于他那相对

论化了的量子体系中,成为电子内禀的自然属性。

但是,无论如何,1926年海森堡和约尔当的成功不仅是电子自旋模型的胜利,更是新生的

矩阵力学的胜利。不久海森堡又天才般地指出了解决有着两个电子的原子――氦原子的道

路,使得新体系的威力再次超越了玻尔的老系统,把它的疆域扩大到以前未知的领域中。

已经在迷雾和荆棘中彷徨了好几年的物理学家们这次终于可以扬眉吐气,把长久郁积的坏

心情一扫而空,好好地呼吸一下那新鲜的空气。

但是,人们还没有来得及歇一歇脚,欣赏一下周围的风景,为目前的成就自豪一下,我们

的快艇便又要前进了。物理学正处在激流之中,它飞流直下,一泻千里,带给人晕眩的速

度和刺激。自牛顿起250年来,科学从没有在哪个时期可以像如今这般翻天覆地,健步如

飞。量子的力量现在已经完全苏醒了,在接下来的3年间,它将改变物理学的一切,在人

类的智慧中刻下最深的烙印,并影响整个20世纪的面貌。

当乌仑贝克和古德施密特提出自旋的时候,玻尔正在去往莱登(Leiden)的路上。当他的

火车到达汉堡的时候,他发现泡利和斯特恩(Stern)站在站台上,只是想问问他关于自

旋的看法,玻尔不大相信,但称这很有趣。到达莱登以后,他又碰到了爱因斯坦和埃仑费

斯特,爱因斯坦详细地分析了这个理论,于是玻尔改变了看法。在回去的路上,玻尔先经

过哥廷根,海森堡和约尔当站在站台上。同样的问题:怎么看待自旋?最后,当玻尔的火

车抵达柏林,泡利又站在了站台上――他从汉堡一路赶到柏林,想听听玻尔一路上有了什

么看法的变化。

人们后来回忆起那个年代,简直像是在讲述一个童话。物理学家们一个个都被洪流冲击得

站不住脚:节奏快得几乎不给人喘息的机会,爆炸性的概念一再地被提出,每一个都足以

改变整个科学的面貌。但是,每一个人都感到深深的骄傲和自豪,在理论物理的黄金年代

,能够扮演历史舞台上的那一个角色。人们常说,时势造英雄,在量子物理的大发展时代

,英雄们的确留下了最最伟大的业绩,永远让后人心神向往。

回到我们的史话中来。现在,花开两朵,各表一支。我们去看看量子论是如何沿着另一条

完全不同的思路,取得同样伟大的突破的。

家园 【史话】决战紫禁之巅之爱玻之战(6-1)(6-2)

前面部分{cchere.com jlanu}

http://www.cchere.com/article/115;ID=106476{cchere.com jlanu}

第六章 大一统

当年轻气盛的海森堡在哥廷根披荆斩棘的时候,埃尔文•薛定谔(Erwin

Schrodinger)已经是瑞士苏黎世大学的一位有名望的教授。当然,相比海森堡来说,薛

定谔只能算是大器晚成。这位出生于维也纳的奥地利人并没有海森堡那么好的运气,在一

个充满了顶尖精英人物的环境里求学,而几次在战争中的服役也阻碍了他的学术研究。但

不管怎样,薛定谔的物理天才仍然得到了很好的展现,他在光学、电磁学、分子运动理论

、固体和晶体的动力学方面都作出过突出的贡献,这一切使得苏黎世大学于1921年提供给

他一份合同,聘其为物理教授。而从1924年起,薛定谔开始对量子力学和统计理论感到兴

趣,从而把研究方向转到这上面来。

和玻尔还有海森堡他们不同,薛定谔并不想在原子那极为复杂的谱线迷宫里奋力冲突,撞

得头破血流。他的灵感,直接来自于德布罗意那巧妙绝伦的工作。我们还记得,1923年,

德布罗意的研究揭示出,伴随着每一个运动的电子,总是有一个如影随形的“相波”。这

一方面为物质的本性究竟是粒子还是波蒙上了更为神秘莫测的面纱,但同时也已经提供通

往最终答案的道路。

薛定谔还是从爱因斯坦的文章中得知德布罗意的工作的。他在1925年11月3日写给爱因斯

坦的信中说:“几天前我怀着最大的兴趣阅读了德布罗意富有独创性的论文,并最终掌握

了它。我是从你那关于简并气体的第二篇论文的第8节中第一次了解它的。”把每一个粒

子都看作是类波的思想对薛定谔来说极为迷人,他很快就在气体统计力学中应用这一理论

,并发表了一篇题为《论爱因斯坦的气体理论》的论文。这是他创立波动力学前的最后一

篇论文,当时距离那个伟大的时刻已经只有一个月。从中可以看出,德布罗意的思想已经

最大程度地获取了薛定谔的信任,他开始相信,只有通过这种波的办法,才能够到达人们

所苦苦追寻的那个目标。

1925年的圣诞很快到来了,美丽的阿尔卑斯山上白雪皑皑,吸引了各地的旅游度假者。薛

定谔一如既往地来到了他以前常去的那个地方:海拔1700米高的阿罗萨(Arosa)。自从

他和安妮玛丽•伯特尔(Annemarie Bertel)在1920年结婚后,两人就经常来这里

度假。薛定谔的生活有着近乎刻板的规律,他从来不让任何事情干扰他的假期。而每次夫

妇俩来到阿罗萨的时候,总是住在赫维格别墅,这是一幢有着尖顶的,四层楼的小屋。

不过1925年,来的却只有薛定谔一个人,安妮留在了苏黎世。当时他们的关系显然极为紧

张,不止一次地谈论着分手以及离婚的事宜。薛定谔写信给维也纳的一位“旧日的女朋友

”,让她来阿罗萨陪伴自己。这位神秘女郎的身份始终是个谜题,二战后无论是科学史专

家还是八卦新闻记者,都曾经竭尽所能地去求证她的真面目,却都没有成功。薛定谔当时

的日记已经遗失了,而从留下的蛛丝马迹来看,她又不像任何一位已知的薛定谔的情人。

但有一件事是肯定的:这位神秘女郎极大地激发了薛定谔的灵感,使得他在接下来的12个

月里令人惊异地始终维持着一种极富创造力和洞察力的状态,并接连不断地发表了六篇关

于量子力学的主要论文。薛定谔的同事在回忆的时候总是说,薛定谔的伟大工作是在他生

命中一段情欲旺盛的时期做出的。从某种程度上来说,科学还要小小地感谢一下这位不知

名的女郎。

回到比较严肃的话题上来。在咀嚼了德布罗意的思想后,薛定谔决定把它用到原子体系的

描述中去。我们都已经知道,原子中电子的能量不是连续的,它由原子的分立谱线而充分

地证实。为了描述这一现象,玻尔强加了一个“分立能级”的假设,海森堡则运用他那庞

大的矩阵,经过复杂的运算后导出了这一结果。现在轮到薛定谔了,他说,不用那么复杂

,也不用引入外部的假设,只要把我们的电子看成德布罗意波,用一个波动方程去表示它

,那就行了。

薛定谔一开始想从建立在相对论基础上的德布罗意方程出发,将其推广到束缚粒子中去。

为此他得出了一个方程,不过不太令人满意,因为没有考虑到电子自旋的情况。当时自旋

刚刚发现不久,薛定谔还对其一知半解。于是,他回过头来,从经典力学的哈密顿-雅可

比方程出发,利用变分法和德布罗意公式,最后求出了一个非相对论的波动方程,用希腊

字母ψ来代表波的函数,最终形式是这样的:

△ψ+[8(π^2)m/h^2] (E - V)ψ = 0

这便是名震整部20世纪物理史的薛定谔波函数。当然对于一般的读者来说并没有必要去探

讨数学上的详细意义,我们只要知道一些符号的含义就可以了。三角△叫做“拉普拉斯算

符”,代表了某种微分运算。h是我们熟知的普朗克常数。E是体系总能量,V是势能,在

原子里也就是-e^2/r。在边界条件确定的情况下求解这个方程,我们可以算出E的解来。

如果我们求解方程sin(x)=0,答案将会是一组数值,x可以是0,π,2π,或者是nπ。si

n(x)的函数是连续的,但方程的解却是不连续的,依赖于整数n。同样,我们求解薛定谔

方程中的E,也将得到一组分立的答案,其中包含了量子化的特征:整数n。我们的解精确

地吻合于实验,原子的神秘光谱不再为矩阵力学所专美,它同样可以从波动方程中被自然

地推导出来。

现在,我们能够非常形象地理解为什么电子只能在某些特定的能级上运行了。电子有着一

个内在的波动频率,我们想象一下吉他上一根弦的情况:当它被拨动时,它便振动起来。

但因为吉他弦的两头是固定的,所以它只能形成整数个波节。如果一个波长是20厘米,那

么弦的长度显然只能是20厘米、40厘米、60厘米……而不可以是50厘米。因为那就包含了

半个波,从而和它被固定的两头互相矛盾。假如我们的弦形成了某种圆形的轨道,就像电

子轨道那样,那么这种“轨道”的大小显然也只能是某些特定值。如果一个波长20厘米,

轨道的周长也就只能是20厘米的整数倍,不然就无法头尾互相衔接了。

从数学上来说,这个函数叫做“本征函数”(Eigenfunction),求出的分立的解叫做“

本征值”(Eigenvalue)。所以薛定谔的论文叫做《量子化是本征值问题》,从1926年1

月起到6月,他一连发了四篇以此为题的论文,从而彻底地建立了另一种全新的力学体系

――波动力学。在这四篇论文中间,他还写了一篇《从微观力学到宏观力学的连续过渡》

的论文,证明古老的经典力学只是新生的波动力学的一种特殊表现,它完全地被包容在波

动力学内部。

薛定谔的方程一出台,几乎全世界的物理学家都为之欢呼。普朗克称其为“划时代的工作

”,爱因斯坦说:“……您的想法源自于真正的天才。”“您的量子方程已经迈出了决定

性的一步。”埃仑费斯特说:“我为您的理论和其带来的全新观念所着迷。在过去的两个

礼拜里,我们的小组每天都要在黑板前花上几个小时,试图从一切角度去理解它。”薛定

谔的方程通俗形象,简明易懂,当人们从矩阵那陌生的迷宫里抬起头来,再次看到自己熟

悉的以微分方程所表达的系统时,他们都像闻到了故乡泥土的芬芳,有一种热泪盈眶的冲

动。但是,这种新体系显然也已经引起了矩阵方面的注意,哥廷根和哥本哈根的那些人,

特别是海森堡本人,显然对这种“通俗”的解释是不满意的。

海森堡在写给泡利的信中说:

“我越是思考薛定谔理论的物理意义,就越感到厌恶。薛定谔对于他那理论的形象化的描

述是毫无意义的,换一种说法,那纯粹是一个Mist。”Mist这个德文,基本上相当于英语

里的bullshit或者crap。

薛定谔也毫不客气,在论文中他说:

“我的理论是从德布罗意那里获得灵感的……我不知道它和海森堡有任何继承上的关系。

我当然知道海森堡的理论,它是一种缺乏形象化的,极为困难的超级代数方法。我即使不

完全排斥这种理论,至少也对此感到沮丧。”

矩阵力学,还是波动力学?全新的量子论诞生不到一年,很快已经面临内战。

回顾一下量子论在发展过程中所经历的两条迥异的道路是饶有趣味的。第一种办法的思路

是直接从观测到的原子谱线出发,引入矩阵的数学工具,用这种奇异的方块去建立起整个

新力学的大厦来。它强调观测到的分立性,跳跃性,同时又坚持以数学为唯一导向,不为

日常生活的直观经验所迷惑。但是,如果追究根本的话,它所强调的光谱线及其非连续性

的一面,始终可以看到微粒势力那隐约的身影。这个理论的核心人物自然是海森堡,波恩

,约尔当,而他们背后的精神力量,那位幕后的“教皇”,则无疑是哥本哈根的那位伟大

的尼尔斯•玻尔。这些关系密切的科学家们集中资源和火力,组成一个坚强的战斗

集体,在短时间内取得突破,从而建立起矩阵力学这一壮观的堡垒来。

而沿着另一条道路前进的人们在组织上显然松散许多。大致说来,这是以德布罗意的理论

为切入点,以薛定谔为主将的一个派别。而在波动力学的创建过程中起到关键的指导作用

的爱因斯坦,则是他们背后的精神领袖。但是这个理论的政治观点也是很明确的:它强调

电子作为波的连续性一面,以波动方程来描述它的行为。它热情地拥抱直观的解释,试图

恢复经典力学那种形象化的优良传统,有一种强烈的复古倾向,但革命情绪不如对手那样

高涨。打个不太恰当的比方,矩阵方面提倡彻底的激进的改革,摒弃旧理论的直观性,以

数学为唯一基础,是革命的左派。而波动方面相对保守,它强调继承性和古典观念,重视

理论的形象化和物理意义,是革命的右派。这两派的大战将交织在之后量子论发展的每一

步中,从而为人类的整个自然哲学带来极为深远的影响。

在上一节中,我们已经提到,海森堡和薛定谔互相对对方的理论表达出毫不掩饰的厌恶(

当然,他们私人之间是无怨无仇的)。他们各自认定,自己的那套方法才是唯一正确的。

这是自然的现象,因为矩阵力学和波动力学看上去是那样地不同,而两人的性格又都以好

胜和骄傲闻名。当衰败的玻尔理论退出历史舞台,留下一个权力真空的时候,无疑每个人

都想占有那一份无上的光荣。不过到了1926年4月份,这种对峙至少在表面上有了缓和,

薛定谔,泡利,约尔当都各自证明了,两种力学在数学上来说是完全等价的!事实上,我

们追寻它们各自的家族史,发现它们都是从经典的哈密顿函数而来,只不过一个是从粒子

的运动方程出发,一个是从波动方程出发罢了。而光学和运动学,早就已经在哈密顿本人

的努力下被联系在了一起,这当真叫做“本是同根生”了。很快人们已经知道,从矩阵出

发,可以推导出波动函数的表达形式来,而反过来,从波函数也可以导出我们的矩阵。19

30年,狄拉克出版了那本经典的量子力学教材,两种力学被完美地统一起来,作为一个理

论的不同表达形式出现在读者面前。

但是,如果谁以为从此就天下太平,万事大吉,那可就大错特错了。虽然两种体系在形式

上已经归于统一,但从内心深处的意识形态来说,它们之间的分歧却越来越大,很快就形

成了不可逾越的鸿沟。数学上的一致并不能阻止人们对它进行不同的诠释,就矩阵方面来

说,它的本意是粒子性和不连续性。而波动方面却始终在谈论波动性和连续性。波粒战争

现在到达了最高潮,双方分别找到了各自可以依赖的政府,并把这场战争再次升级到对整

个物理规律的解释这一层次上去。

“波,只有波才是唯一的实在。”薛定谔肯定地说,“不管是电子也好,光子也好,或者

任何粒子也好,都只是波动表面的泡沫。它们本质上都是波,都可以用波动方程来表达基

本的运动方式。”

“绝对不敢苟同。”海森堡反驳道,“物理世界的基本现象是离散性,或者说不连续性。

大量的实验事实证明了这一点:从原子的光谱,到康普顿的实验,从光电现象,到原子中

电子在能级间的跳跃,都无可辩驳地显示出大自然是不连续的。你那波动方程当然在数学

上是一个可喜的成就,但我们必须认识到,我们不能按照传统的那种方式去认识它――它

不是那个意思。”

“恰恰相反。”薛定谔说,“它就是那个意思。波函数ψ(读作psai)在各个方向上都是

连续的,它可以看成是某种振动。事实上,我们必须把电子想象成一种驻在的本征振动,

所谓电子的“跃迁”,只不过是它振动方式的改变而已。没有什么‘轨道’,也没有什么

‘能级’,只有波。”

“哈哈。”海森堡嘲笑说,“你恐怕对你自己的ψ是个什么东西都没有搞懂吧?它只是在

某个虚拟的空间里虚拟出来的函数,而你硬要把它想象成一种实在的波。事实上,我们绝

不能被日常的形象化的东西所误导,再怎么说,电子作为经典粒子的行为你是不能否认的

。”

“没错。”薛定谔还是不肯示弱,“我不否认它的确展示出类似质点的行为。但是,就像

一个椰子一样,如果你敲开它那粒子的坚硬的外壳,你会发现那里面还是波动的柔软的汁

水。电子无疑是由正弦波组成的,但这种波在各个尺度上伸展都不大,可以看成一个‘波

包’。当这种波包作为一个整体前进时,它看起来就像是一个粒子。可是,本质上,它还

是波,粒子只不过是波的一种衍生物而已。”

正如大家都已经猜到的那样,两人谁也无法说服对方。1926年7月,薛定谔应邀到慕尼黑

大学讲授他的新力学,海森堡就坐在下面,他站起来激烈地批评薛定谔的解释,结果悲哀

地发现在场的听众都对他持有反对态度。早些时候,玻尔原来的助手克莱默接受了乌特勒

支(Utrecht)大学的聘书而离开哥本哈根,于是海森堡成了这个位置的继任者――现在

他可以如梦想的那样在玻尔的身边工作了。玻尔也对薛定谔那种回归经典传统的理论观感

到不安,为了解决这个问题,他邀请薛定谔到哥本哈根进行一次学术访问,争取在交流中

达成某种一致意见。

9月底,薛定谔抵达哥本哈根,玻尔到火车站去接他。争论从那一刻便已经展开,日日夜

夜,无休无止,一直到薛定谔最终离开哥本哈根为止。海森堡后来在他的《部分与整体》

一书中回忆了这次碰面,他说,虽然平日里玻尔是那样一个和蔼可亲的人,但一旦他卷入

这种物理争论,他看起来就像一个偏执的狂热者,决不肯妥协一步。争论当然是物理上的

问题,但在很大程度上已经变成了哲学之争。薛定谔就是不能相信,一种“无法想象”的

理论有什么实际意义。而玻尔则坚持认为,图像化的概念是不可能用在量子过程中的,它

无法用日常语言来描述。他们激烈地从白天吵到晚上,最后薛定谔筋疲力尽,他很快病倒

了,不得不躺到床上,由玻尔的妻子玛格丽特来照顾。即使这样,玻尔仍然不依不饶,他

冲进病房,站在薛定谔的床头继续与之辩论。当然,最后一切都是徒劳,谁也没有被对方

说服。

物理学界的空气业已变得非常火热。经典理论已经倒塌了,现在矩阵力学和波动力学两座

大厦拔地而起,它们之间以某种天桥互相联系,从理论上说要算是一体。可是,这两座大

厦的地基却仍然互不关联,这使得表面上的亲善未免有那么一些口是心非的味道。而且,

波动和微粒,这两个300年来的宿敌还在苦苦交战,不肯从自己的领土上后退一步。双方

都依旧宣称自己对于光、电,还有种种物理现象拥有一切主权,而对手是非法武装势力,

是反政府组织。现在薛定谔加入波动的阵营,他甚至为波动提供了一部完整的宪法,也就

是他的波动方程。在薛定谔看来,波动代表了从惠更斯,杨一直到麦克斯韦的旧日帝国的

光荣,而这种贵族的传统必须在新的国家得到保留和发扬。薛定谔相信,波动这一简明形

象的概念将再次统治物理世界,从而把一切都归结到一个统一的图像里去。

不幸的是,薛定谔猜错了。波动方面很快就要发现,他们的宪法原来有着更为深长的意味

。从字里行间,我们可以读出一些隐藏的意思来,它说,天下为公,哪一方也不能独占,

双方必须和谈,然后组成一个联合政府来进行统治。它还披露了更为惊人的秘密:双方原

来在血缘上有着密不可分的关系。最后,就像阿尔忒弥斯庙里的祭司所作出的神喻,它预

言在这种联合统治下,物理学将会变得极为不同:更为奇妙,更为神秘,更为繁荣。

好一个精彩的预言。

*********

饭后闲话:薛定谔的女朋友

2001年11月,剧作家Matthew Wells的新作《薛定谔的女朋友》(Schrodinger’s

Girfriend)在旧金山著名的Fort Mason Center首演。这出喜剧以1926年薛定谔在阿罗萨

那位神秘女友的陪伴下创立波动力学这一历史为背景,探讨了爱情、性,还有量子物理的

关系,受到了评论家的普遍好评。今年(2003年)初,这个剧本搬到东岸演出,同样受到

欢迎。近年来形成了一股以科学人物和科学史为题材的话剧创作风气,除了这出《薛定谔

的女朋友》之外,恐怕更有名的就是那个东尼奖得主,Michael Frayn的《哥本哈根》了

不过,要数清薛定谔到底有几个女朋友,还当真是一件难事。这位物理大师的道德观显然

和常人有着一定的距离,他的古怪行为一直为人们所排斥。1912年,他差点为了喜欢的一

个女孩而放弃学术,改行经营自己的家庭公司(当时在大学教书不怎么赚钱),到他遇上

安妮玛丽之前,薛定谔总共爱上过4个年轻女孩,而且主要是一种精神上的恋爱关系。对

此,薛定谔的主要传记作者之一,Walter Moore辩解说,不能把它简单地看成一种放纵行

为。

如果以上都还算正常,婚后的薛定谔就有点不拘礼法的狂放味道了。他和安妮的婚姻之路

从来不曾安定和谐,两人终生也没有孩子。而在外沾花惹草的事,薛定谔恐怕没有少做,

他对太太也不隐瞒这一点。安妮,反过来,也和薛定谔最好的朋友之一,赫尔曼•

威尔(Hermann Weyl)保持着暧昧的关系(威尔自己的老婆却又迷上了另一个人,真是天

昏地暗)。两人讨论过离婚,但安妮的天主教信仰和昂贵的手续费事实上阻止了这件事的

发生。《薛定谔的女朋友》一剧中调笑说:“到底是波-粒子的二象性难一点呢,还是老

婆-情人的二象性更难?”

薛定谔,按照某种流行的说法,属于那种“多情种子”。他邀请别人来做他的助手,其实

却是看上了他的老婆。这个女人(Hilde March)后来为他生了一个女儿,令人惊奇的是

,安妮却十分乐意地照顾这个婴儿。薛定谔和这两个女子公开同居,事实上过着一种一妻

一妾的生活(这个妾还是别人的合法妻子),这过于惊世骇俗,结果在牛津和普林斯顿都

站不住脚,只好走人。他的风流史还可以开出一长串,其中有女学生、演员、OL,留下了

若干私生子。但薛定谔却不是单纯的欲望的发泄,他的内心有着强烈的罗曼蒂克式的冲动

,按照段正淳的说法,和每个女子在一起时,却都是死心塌地,恨不得把心掏出来,为之

谱写了大量的情诗。我希望大家不要认为我过于八卦,事实上对情史的分析是薛定谔研究

中的重要内容,它有助于我们理解这位科学家极为复杂的内在心理和带有个人色彩的独特

性格。

最最叫人惊讶的是,这样一个薛定谔的婚姻后来却几乎得到了完美的结局。尽管经历了种

种风浪,穿越重重险滩,他和安妮却最终白头到老,真正像在誓言中所说的那样:to

have and to hold, in sickness and in health, till death parts us。在薛定谔生命

的最后时期,两人早已达成了谅解,安妮说:“在过去41年里的喜怒哀乐把我们紧紧结合

在一起,这最后几年我们也不想分开了。”薛定谔临终时,安妮守在他的床前握住他的手

,薛定谔说:“现在我又拥有了你,一切又都好起来了。”

薛定谔死后葬在Alpbach,他的墓地不久就被皑皑白雪所覆盖。四年后,安妮玛丽•

薛定谔也停止了呼吸

家园 开战??,不容错过的一章。波动军团派出多情公子薛定谔vs微粒军团天才儿童海森堡
家园 【史话】决战紫禁之巅之爱玻之战(6-3)(6-4)

第六章 大一统

1926年中,虽然矩阵派和波动派还在内心深处相互不服气,它们至少在表面上被数学所统

一起来了。而且,不出意外地,薛定谔的波动方程以其琅琅上口,简明易学,为大多数物

理学家所欢迎的特色,很快在形式上占得了上风。海森堡和他那诘屈聱牙的方块矩阵虽然

不太乐意,也只好接受现实。事实证明,除了在处理关于自旋的几个问题时矩阵占点优势

,其他时候波动方程抢走了几乎全部的人气。其实吗,物理学家和公众想象的大不一样,

很少有人喜欢那种又难又怪的变态数学,既然两种体系已经被证明在数学上具有同等性,

大家也就乐得选那个看起来简单熟悉的。

甚至在矩阵派内部,波动方程也受到了欢迎。首先是海森堡的老师索末菲,然后是建立矩

阵力学的核心人物之一,海森堡的另一位导师马科斯•波恩。波恩在薛定谔方程刚

出炉不久后就热情地赞叹了他的成就,称波动方程“是量子规律中最深刻的形式”。据说

,海森堡对波恩的这个“叛变”一度感到十分伤心。

但是,海森堡未免多虑了,波恩对薛定谔方程的赞许并不表明他选择和薛定谔站在同一条

战壕里。因为虽然方程确定了,但怎么去解释它却是一个大大不同的问题。首先人们要问

的就是,薛定谔的那个波函数ψ(再提醒一下,这个希腊字读成psai),它在物理上代表

了什么意义?

我们不妨再回顾一下薛定谔创立波动方程的思路:他是从经典的哈密顿方程出发,构造一

个体系的新函数ψ代入,然后再引用德布罗意关系式和变分法,最后求出了方程及其解答

,这和我们印象中的物理学是迥然不同的。通常我们会以为,先有物理量的定义,然后才

谈得上寻找它们的数学关系。比如我们懂得了力F,加速度a和质量m的概念,之后才会理

解F=ma的意义。但现代物理学的路子往往可能是相反的,比如物理学家很可能会先定义某

个函数F,让F=ma,然后才去寻找F的物理意义,发现它原来是力的量度。薛定谔的ψ,

就是在空间中定义的某种分布函数,只是人们还不知道它的物理意义是什么。

这看起来颇有趣味,因为物理学家也不得不坐下来猜哑谜了。现在让我们放松一下,想象

自己在某个晚会上,主持人安排了一个趣味猜谜节目供大家消遣。“女士们先生们,”他

兴高采烈地宣布,“我们来玩一个猜东西的游戏,谁先猜出这个箱子里藏的是什么,谁就

能得到晚会上的最高荣誉。”大家定睛一看,那个大箱子似乎沉甸甸的,还真像藏着好东

西,箱盖上古色古香写了几个大字:“薛定谔方程”。

“好吧,可是什么都看不见,怎么猜呢?”人们抱怨道。“那当然那当然。”主持人连忙

说,“我们不是学孙悟空玩隔板猜物,再说这里面也决不是破烂溜丢一口钟,那可是货真

价实的关系到整个物理学的宝贝。嗯,是这样的,虽然我们都看不见它,但它的某些性质

却是可以知道的,我会不断地提示大家,看谁先猜出来。”

众人一阵鼓噪,就这样游戏开始了。“这件东西,我们不知其名,强名之曰ψ。”主持人

清了清嗓门说,“我可以告诉大家的是,它代表了原子体系中电子的某个函数。”下面顿

时七嘴八舌起来:“能量?频率?速度?距离?时间?电荷?质量?”主持人不得不提高

嗓门喊道:“安静,安静,我们还刚刚开始呢,不要乱猜啊。从现在开始谁猜错了就失去

参赛资格。”于是瞬间鸦雀无声。

“好。”主持人满意地说,“那么我们继续。第二个条件是这样的:通过我的观察,我发

现,这个ψ是一个连续不断的东西。”这次大家都不敢说话,但各人迅速在心里面做了排

除。既然是连续不断,那么我们已知的那些量子化的条件就都排除了。比如我们都已经知

道电子的能级不是连续的,那ψ看起来不像是这个东西。

“接下来,通过ψ的构造可以看出,这是一个没有量纲的函数。但它同时和电子的位置有

某些联系,对于每一个电子来说,它都在一个虚拟的三维空间里扩展开去。”话说到这里

好些人已经糊涂了,只有几个思维特别敏捷的还在紧张地思考。

“总而言之,ψ如影随形地伴随着每一个电子,在它所处的那个位置上如同一团云彩般地

扩散开来。这云彩时而浓厚时而稀薄,但却是按照某种确定的方式演化。而且,我再强调

一遍,这种扩散及其演化都是经典的,连续的,确定的。”于是众人都陷入冥思苦想中,

一点头绪都没有。

“是的,云彩,这个比喻真妙。”这时候一个面容瘦削,戴着夹鼻眼睛的男人呵呵笑着站

起来说。主持人赶紧介绍:“女士们先生们,这位就是薛定谔先生,也是这口宝箱的发现

者。”大家于是一阵鼓掌,然后屏息凝神地听他要发表什么高见。

“嗯,事情已经很明显了,ψ是一个空间分布函数。”薛定谔满有把握地说,“当它和电

子的电荷相乘,就代表了电荷在空间中的实际分布。云彩,尊敬的各位,电子不是一个粒

子,它是一团波,像云彩一般地在空间四周扩展开去。我们的波函数恰恰描述了这种扩展

和它的行为。电子是没有具体位置的,它也没有具体的路径,因为它是一团云,是一个波

,它向每一个方向延伸――虽然衰减得很快,这使它粗看来像一个粒子。女士们先生们,

我觉得这个发现的最大意义就是,我们必须把一切关于粒子的假相都从头脑里清除出去,

不管是电子也好,光子也好,什么什么子也好,它们都不是那种传统意义上的粒子。把它

们拉出来放大,仔细审视它们,你会发现它在空间里融化开来,变成无数振动的叠加。是

的,一个电子,它是涂抹开的,就像涂在面包上的黄油那样,它平时蜷缩得那么紧,以致

我们都把它当成小球,但是,这已经被我们的波函数ψ证明不是真的。多年来物理学误入

歧途,我们的脑袋被光谱线,跃迁,能级,矩阵这些古怪的东西搞得混乱不堪,现在,是

时候回归经典了。”

“这个宝箱,”薛定谔指着那口大箱子激动地说,“是一笔遗产,是昔日传奇帝国的所罗

门王交由我们继承的。它时时提醒我们,不要为歪门邪道所诱惑,走到无法回头的岔路上

去。物理学需要改革,但不能允许思想的混乱,我们已经听够了奇谈怪论,诸如电子像跳

蚤一般地在原子里跳来跳去,像一个完全无法预见自己方向的醉汉。还有那故弄玄虚的所

谓矩阵,没人知道它包含什么物理含义,而它却不停地叫嚷自己是物理学的正统。不,现

在让我们回到坚实的土地上来,这片巨人们曾经奋斗过的土地,这片曾经建筑起那样雄伟

构筑的土地,这片充满了骄傲和光荣历史的土地。简洁、明晰、优美、直观性、连续性、

图像化,这是物理学王国中的胜利之杖,它代代相传,引领我们走向胜利。我毫不怀疑,

新的力学将在连续的波动基础上作出,把一切都归于简单的图像中,并继承旧王室的血统

。这决不是守旧,因为这种血统同时也是承载了现代科学300年的灵魂。这是物理学的象

征,它的神圣地位决不容许受到撼动,任何人也不行。”

薛定谔这番雄辩的演讲无疑深深感染了在场的绝大部分观众,因为人群中爆发出一阵热烈

的掌声和喝彩声。但是,等等,有一个人在不断地摇头,显得不以为然的样子,薛定谔很

快就认出,那是哥廷根的波恩,海森堡的老师。他不是刚刚称赞过自己的方程吗?难道海

森堡这小子又用了什么办法把他拉拢过去了不成?

“嗯,薛定谔先生”,波恩清了清嗓子站起来说,“首先我还是要对您的发现表示由衷的

赞叹,这无疑是稀世奇珍,不是每个人都有如此幸运做出这样伟大的成就的。”薛定谔点

了点头,心情放松了一点。“但是,”波恩接着说,“我可以问您一个问题吗?虽然这是

您找到的,但您本人有没有真正地打开过箱子,看看里面是什么呢?”

这令薛定谔大大地尴尬,他踟躇了好一会儿才回答:“说实话,我也没有真正看见过里面

的东西,因为我没有箱子的钥匙。”众人一片惊诧。

“如果是这样的话,”波恩小心翼翼地说,“我倒以为,我不太同意您刚才的猜测呢。”

“哦?”两个人对视了一阵,薛定谔终于开口说:“那么您以为,这里面究竟是什么东西

呢?”

“毫无疑问,”波恩凝视着那雕满了古典花纹的箱子和它上面那把沉重的大锁,“这里面

藏着一些至关紧要的事物,它的力量足以改变整个物理学的面貌。但是,我也有一种预感

,这股束缚着的力量是如此强大,它将把物理学搞得天翻地覆。当然,你也可以换个词语

说,为物理学带来无边的混乱。”

“哦,是吗?”薛定谔惊奇地说,“照这么说来,难道它是潘多拉的盒子?”

“嗯。”波恩点了点头,“人们将陷入困惑和争论中,物理学会变成一个难以理解的奇幻

世界。老实说,虽然我隐约猜到了里面是什么,我还是不能确定该不该把它说出来。”

薛定谔盯着波恩:“我们都相信科学的力量,在于它敢于直视一切事实,并毫不犹豫地去

面对它,检验它,把握它,不管它是什么。何况,就算是潘多拉盒子,我们至少也还拥有

盒底那最宝贵的东西,难道你忘了吗?”

“是的,那是希望。”波恩长出了一口气,“你说的对,不管是祸是福,我们至少还拥有

希望。只有存在争论,物理学才拥有未来。”

“那么,你说这箱子里是……?”全场一片静默,人人都不敢出声。

波恩突然神秘地笑了:“我猜,这里面藏的是……”

“……骰子

第六章 大一统

骰子?骰子是什么东西?它应该出现在大富翁游戏里,应该出现在澳门和拉斯维加斯的赌

场中,但是,物理学?不,那不是它应该来的地方。骰子代表了投机,代表了不确定,而

物理学不是一门最严格最精密,最不能容忍不确定的科学吗?

可以想象,当波恩于1926年7月将骰子带进物理学后,是引起了何等的轩然大波。围绕着

这个核心解释所展开的争论激烈而尖锐,把物理学加热到了沸点。这个话题是如此具有争

议性,很快就要引发20世纪物理史上最有名的一场大论战,而可怜的波恩一直要到整整28

年后,才因为这一杰出的发现而获得诺贝尔奖金――比他的学生们晚上许多。

不管怎么样,我们还是先来看看波恩都说了些什么。骰子,这才是薛定谔波函数ψ的解释

,它代表的是一种随机,一种概率,而决不是薛定谔本人所理解的,是电子电荷在空间中

的实际分布。波恩争辩道,ψ,或者更准确一点,ψ的平方,代表了电子在某个地点出现

的“概率”。电子本身不会像波那样扩展开去,但是它的出现概率则像一个波,严格地按

照ψ的分布所展开。

我们来回忆一下电子或者光子的双缝干涉实验,这是电子波动性的最好证明。当电子穿过

两道狭缝后,便在感应屏上组成了一个明暗相间的图案,展示了波峰和波谷的相互增强和

抵消。但是,正如粒子派指出的那样,每次电子只会在屏上打出一个小点,只有当成群的

电子穿过双缝后,才会逐渐组成整个图案。

现在让我们来做一个思维实验,想象我们有一台仪器,它每次只发射出一个电子。这个电

子穿过双缝,打到感光屏上,激发出一个小亮点。那么,对于这一个电子,我们可以说些

什么呢?很明显,我们不能预言它组成类波的干涉条纹,因为一个电子只会留下一个点而

已。事实上,对于这个电子将会出现在屏幕上的什么地方,我们是一点头绪都没有的,多

次重复我们的实验,它有时出现在这里,有时出现在那里,完全不是一个确定的过程。

不过,我们经过大量的观察,却可以发现,这个电子不是完全没有规律的:它在某些地方

出现的可能性要大一些,在另一些地方则小一些。它出现频率高的地方,恰恰是波动所预

言的干涉条纹的亮处,它出现频率低的地方则对应于暗处。现在我们可以理解为什么大量

电子能组成干涉条纹了,因为虽然每一个电子的行为都是随机的,但这个随机分布的总的

模式却是确定的,它就是一个干涉条纹的图案。这就像我们掷骰子,虽然每一个骰子掷下

去,它的结果都是完全随机的,从1到6都有可能,但如果你投掷大量的骰子到地下,然后

数一数每个点的数量,你会发现1到6的结果差不多是平均的。

关键是,单个电子总是以一个点的面貌出现,它从来不会像薛定谔所说的那样,在屏幕上

打出一滩图案来。只有大量电子接二连三地跟进,总的干涉图案才会逐渐出现。其中亮的

地方也就是比较多的电子打中的地方,换句话说,就是单个电子比较容易出现的地方,暗

的地带则正好相反。如果我们发现,有9成的粒子聚集在亮带,只有1成的粒子在暗带,那

么我们就可以预言,对于单个粒子来说,它有90%的可能出现在亮带的区域,10%的可能

出现在暗带。但是,究竟出现在哪里,我们是无法确定的,我们只能预言概率而已。

我们只能预言概率而已。

但是,等等,我们怎么敢随便说出这种话来呢?这不是对于古老的物理学的一种大不敬吗

?从伽利略牛顿以来,成千上百的先辈们为这门科学呕心沥血,建筑起了这样宏伟的构筑

,它的力量统治整个宇宙,从最大的星系到最小的原子,万事万物都在它的威力下必恭必

敬地运转。任何巨大的或者细微的动作都逃不出它的力量。星系之间产生可怕的碰撞,释

放出难以想象的光和热,并诞生数以亿计的新恒星;宇宙射线以惊人的高速穿越遥远的空

间,见证亘古的时光;微小得看不见的分子们你推我搡,喧闹不停;地球庄严地围绕着太

阳运转,它自己的自转轴同时以难以觉察的速度轻微地振动;坚硬的岩石随着时光流逝而

逐渐风化;鸟儿扑动它的翅膀,借着气流一飞冲天。这一切的一切,不都是在物理定律的

监视下一丝不苟地进行的吗?

更重要的是,物理学不仅能够解释过去和现在,它还能预言未来。我们的定律和方程能够

毫不含糊地预测一颗炮弹的轨迹以及它降落的地点;我们能预言几千年后的日食,时刻准

确到秒;给我一张电路图,多复杂都行,我能够说出它将做些什么;我们制造的机器乖乖

地按照我们预先制定好的计划运行。事实上,对于任何一个系统,只要给我足够的初始信

息,赋予我足够的运算能力,我能够推算出这个体系的一切历史,从它最初怎样开始运行

,一直到它在遥远的未来的命运,一切都不是秘密。是的,一切系统,哪怕骰子也一样。

告诉我骰子的大小,质量,质地,初速度,高度,角度,空气阻力,桌子的质地,摩擦系

数,告诉我一切所需要的情报,那么,只要我拥有足够的运算能力,我可以毫不迟疑地预

先告诉你,这个骰子将会掷出几点来。

物理学统治整个宇宙,它的过去和未来,一切都尽在掌握。这已经成了物理学家心中深深

的信仰。19世纪初,法国的大科学家拉普拉斯(Pierre Simon de Laplace)在用牛顿方

程计算出了行星轨道后,把它展示给拿破仑看。拿破仑问道:“在你的理论中,上帝在哪

儿呢?”拉普拉斯平静地回答:“陛下,我的理论不需要这个假设。”

是啊,上帝在物理学中能有什么位置呢?一切都是由物理定律来统治的,每一个分子都遵

照物理定律来运行,如果说上帝有什么作用的话,他最多是在一开始推动了这个体系一下

,让它得以开始运转罢了。在之后的漫长历史中,有没有上帝都是无关紧要的了,上帝被

物理学赶出了舞台。

“我不需要上帝这个假设。”拉普拉斯站在拿破仑面前说。这可算科学最光荣最辉煌的时

刻之一了,它把无边的自豪和骄傲播撒到每一个科学家的心中。不仅不需要上帝,拉普拉

斯想象,假如我们有一个妖精,一个大智者,或者任何拥有足够智慧的人物,假如他能够

了解在某一刻,这个宇宙所有分子的运动情况的话,那么他就可以从正反两个方向推演,

从而得出宇宙在任意时刻的状态。对于这样的智者来说,没有什么过去和未来的分别,一

切都历历在目。宇宙从它出生的那一刹那开始,就坠入了一个预定的轨道,它严格地按照

物理定律发展,没有任何岔路可以走,一直到遇见它那注定的命运为止。就像你出手投篮

,那么,这究竟是一个三分球,还是打中篮筐弹出,或者是一个air ball,这都在你出手

的一刹那决定了,之后我们所能做的,就是看着它按照写好的剧本发展而已。

是的,科学家知道过去;是的,科学家明白现在;是的,科学家了解未来。只要掌握了定

律,只要搜集足够多的情报,只要能够处理足够大的运算量,科学家就能如同上帝一般无

所不知。整个宇宙只不过是一台精密的机器,它的每个零件都按照定律一丝不苟地运行,

这种想法就是古典的,严格的决定论(determinism)。宇宙从出生的那一刹那起,就有

一个确定的命运。我们现在无法了解它,只是因为我们所知道的信息太少而已。

那么多的天才前仆后继,那么多的伟人呕心沥血,那么多在黑暗中的探索,挣扎,奋斗,

这才凝结成物理学在19世纪黄金时代的全部光荣。物理学家终于可以说,他们能够预测神

秘的宇宙了,因为他们找到了宇宙运行的奥秘。他们说这话时,带着一种神圣而不可侵犯

的情感,决不饶恕任何敢于轻视物理学力量的人。

可是,现在有人说,物理不能预测电子的行为,它只能找到电子出现的概率而已。无论如

何,我们也没办法确定单个电子究竟会出现在什么地方,我们只能猜想,电子有90%的可

能出现在这里,10%的可能出现在那里。这难道不是对整个物理历史的挑衅,对物理学的

光荣和尊严的一种侮辱吗?

我们不能确定?物理学的词典里是没有这个字眼的。在中学的物理考试中,题目给了我们

一个小球的初始参数,要求t时刻的状态,你敢写上“我不能确定”吗?要是你这样做了

,你的物理老师准会气得吹胡子瞪眼睛,并且毫不犹豫地给你亮个红灯。不能确定?不可

能,物理学什么都能确定。诚然,有时候为了方便,我们也会引进一些统计的方法,比如

处理大量的空气分子运动时,但那是完全不同的一个问题。科学家只是凡人,无法处理那

样多的复杂计算,所以应用了统计的捷径。但是从理论上来说,只要我们了解每一个分子

的状态,我们完全可以严格地推断出整个系统的行为,分毫不爽。

然而波恩的解释不是这样,波恩的意思是,就算我们把电子的初始状态测量得精确无比,

就算我们拥有最强大的计算机可以计算一切环境对电子的影响,即便如此,我们也不能预

言电子最后的准确位置。这种不确定不是因为我们的计算能力不足而引起的,它是深藏在

物理定律本身内部的一种属性。即使从理论上来说,我们也不能准确地预测大自然。这已

经不是推翻某个理论的问题,这是对整个决定论系统的挑战,而决定论是那时整个科学的

基础。量子论挑战整个科学。

波恩在论文里写道:“……这里出现的是整个决定论的问题了。”(Hier erhebt sich

der ganze Problematik des Determinismus.)

对于许多物理学家来说,这是一个不可原谅的假设。骰子?不确定?别开玩笑了。对于他

们中的好些人来说,物理学之所以那样迷人,那样富有魔力,正是因为它深刻,明晰,能

够确定一切,扫清人们的一切疑惑,这才使他们义无反顾地投身到这一事业中去。现在,

物理学竟然有变成摇奖机器的危险,竟然要变成一个掷骰子来决定命运的赌徒,这怎么能

够容忍呢?

不确定?

一场史无前例的大争论即将展开,在争吵和辩论后面是激动,颤抖,绝望,泪水,伴随着

整个决定论在20世纪的悲壮谢幕。

*********

饭后闲话:决定论

可以说决定论的兴衰浓缩了整部自然科学在20世纪的发展史。科学从牛顿和拉普拉斯的时

代走来,辉煌的成功使它一时得意忘形,认为它具有预测一切的能力。决定论认为,万物

都已经由物理定律所规定下来,连一个细节都不能更改。过去和未来都像已经写好的剧本

,宇宙的发展只能严格地按照这个剧本进行,无法跳出这个窠臼。

矜持的决定论在20世纪首先遭到了量子论的严重挑战,随后混沌动力学的兴起使它彻底被

打垮。现在我们已经知道,即使没有量子论把概率这一基本属性赋予自然界,就牛顿方程

本身来说,许多系统也是极不稳定的,任何细小的干扰都能够对系统的发展造成极大的影

响,差之毫厘,失之千里。这些干扰从本质上说是不可预测的,因此想凭借牛顿方程来预

测整个系统从理论上说也是不可行的。典型的例子是长期的天气预报,大家可能都已经听

说过洛伦兹著名的“蝴蝶效应”,哪怕一只蝴蝶轻微地扇动它的翅膀,也能给整个天气系

统造成戏剧性的变化。现在的天气预报也已经普遍改用概率性的说法,比如“明天的降水

概率是20%”。

1986年,著名的流体力学权威,詹姆士•莱特希尔爵士(Sir James Lighthill,他

于1969年从狄拉克手里接过剑桥卢卡萨教授的席位,也就是牛顿曾担任过的那个)于皇家

学会纪念牛顿《原理》发表300周年的集会上发表了轰动一时的道歉:

“现在我们都深深意识到,我们的前辈对牛顿力学的惊人成就是那样崇拜,这使他们把它

总结成一种可预言的系统。而且说实话,我们在1960年以前也大都倾向于相信这个说法,

但现在我们知道这是错误的。我们以前曾经误导了公众,向他们宣传说满足牛顿运动定律

的系统是决定论的,但是这在1960年后已被证明不是真的。我们都愿意在此向公众表示道

歉。”

(We are all deeply conscious today that the enthusiasm of our forebears for

the marvelous achievements of Newtonian mechanics led them to make

generalizations in this area of predictability which, indeed, we may have

generally tended to believe before 1960, but which we now recognize were

false. We collectively wish to apologize for having misled the general

educated public by spreading ideas about the determinism of systems satisfying

Newton's laws of motion that, after 1960,were to be proved incorrect.)

决定论的垮台是否注定了自由意志的兴起?这在哲学上是很值得探讨的。事实上,在量子

论之后,物理学越来越陷于形而上学的争论中。也许形而上学(metaphysics)应该改个

名字叫“量子论之后”(metaquantum)。在我们的史话后面,我们会详细地探讨这些问

题。

Ian Stewart写过一本关于混沌的书,书名也叫《上帝掷骰子吗》。这本书文字优美,很

值得一读,当然和我们的史话没什么联系。我用这个名字,一方面是想强调决定论的兴衰

是我们史话的中心话题,另外,毕竟爱因斯坦这句名言本来的版权是属于量子论的。

家园 写到这里才刚刚接近主题,呵呵,够吊胃口的,期待
家园 这不是为了收视率嘛。所以每天转一点
家园 【史话】决战紫禁之巅之爱玻之战(6-5)(7-1)

第六章 大一统

在我们出发去回顾新量子论与经典决定论的那场惊心动魄的悲壮决战之前,在本章的最后

还是让我们先来关注一下历史遗留问题,也就是我们的微粒和波动的宿怨。波恩的概率解

释无疑是对薛定谔传统波动解释的一个沉重打击,现在,微粒似乎可以暂时高兴一下了。

“看,”它嘲笑对手说,“薛定谔也救不了你,他对波函数的解释是站不住脚的。难怪总

是有人说,薛定谔的方程比薛定谔本人还聪明哪。波恩的概率才是有道理的,电子始终是

一个电子,任何时候你观察它,它都是一个粒子,你吵嚷多年的所谓波,原来只是那看不

见摸不着的‘概率’罢了。哈哈,把这个头衔让给你,我倒是毫无异议的,但你得首先承

认我的正统地位。”

但是波动没有被吓倒,说实话,双方300年的恩怨缠结,经过那么多风风雨雨,早就练就

了处变不惊的本领。“哦,是吗?”它冷静地回应道,“恐怕事情不如你想象得那么简单

吧?我们不如缩小到电子那个尺寸,去亲身感受一下一个电子在双缝实验中的经历如何?

微粒迟疑了一下便接受了:“好吧,让你彻底死心也好。”

那么,现在让我们也想象自己缩小到电子那个尺寸,跟着它一起去看看事实上到底发生了

什么事。一个电子的直径小于一亿分之一埃,也就是10^-23米,它的质量小于10^-30千克

,变得这样小,看来这必定是一次奇妙的旅程呢。

好,现在我们已经和一个电子一样大了,突然缩小了那么多,还真有点不适应,看出去的

世界也变得模糊扭曲起来。不过,我们第一次发现,世界原来那么空旷,几乎是空无一物

,这也情有可原,从我们的尺度看来,原子核应该像是远在天边吧?好,现在迎面来了一

个电子,这是个好机会,让我们睁大眼睛,仔细地看一看它究竟是个粒子还是波?奇怪,

为什么我们什么都看不见呢?啊,原来我们忘了一个关键的事实!

要“看见”东西,必须有光进入我们的眼睛才行。但现在我们变得这么小,即使光――不

管它是光子还是光波――对于我们来说也太大了。但是不管怎样,为了探明这个秘密,我

们必须得找到从电子那里反射过来的光,凭感觉,我知道从左边来了一团光(之所以说“

一团”光,是因为我不清楚它究竟是一个光粒子还是一道光波,没有光,我也看不到光本

身,是吧?),现在让我们勇敢地迎上去,啊,秘密就要揭开了!

随着“砰”地一声,我们被这团光粗暴地击中,随后身不由己地飞到半空中,被弹出了十

万八千里。这次撞击使得我们浑身筋骨欲脱,脑中天旋地转,眼前直冒金星。我们忘了自

己现在是个什么尺寸!要不是运气好,这次碰撞已经要了咱们的小命。当好不容易爬起来

时,早就不知道自己身在何方,那个电子更是无影无踪了。

刚才真是好险,看来这一招是行不通的。不过,我听见声音了,是微粒和波动在前面争论

呢,咱们还是跟着这哥俩去看个究竟。它们为了模拟一个电子的历程,从某个阴极射线管

出发,现在,面前就是那著名的双缝了。

“嗨,微粒。”波动说道,“假如电子是个粒子的话,它下一步该怎样行动呢?眼前有两

条缝,它只能选择其中之一啊,如果它是个粒子,它不可能两条缝都通过吧?”

“嗯,没错。”微粒说,“粒子就是一个小点,是不可分割的。我想,电子必定选择通过

了其中的某一条狭缝,然后投射到后面的光屏上,激发出一个小点。”

“可是,”波动一针见血地说,“它怎能够按照干涉模式的概率来行动呢?比如说它从右

边那条缝过去了吧,当它打到屏幕前,它怎么能够知道,它应该有90%的机会出现到亮带

区,10%的机会留给暗带区呢?要知道这个干涉条纹可是和两条狭缝之间的距离密切相关

啊,要是电子只通过了一条缝,它是如何得知两条缝之间的距离的呢?”

微粒有点尴尬,它迟疑地说:“我也承认,伴随着一个电子的有某种类波的东西,也就是

薛定谔的波函数ψ,波恩说它是概率,我们就假设它是某种看不见的概率波吧。你可以把

它想象成从我身上散发出去的某种看不见的场,我想,在我通过双缝之前,这种看不见的

波场在空间中弥漫开去,探测到了双缝之间的距离,从而使我得以知道如何严格地按照概

率行动。但是,我的实体必定只能通过其中的一条缝。”

“一点道理也没有。”波动摇头说,“我们不妨想象这样一个情景吧,假如电子是一个粒

子,它现在决定通过右边的那条狭缝。姑且相信你的说法,有某种概率波事先探测到了双

缝间的距离,让它胸有成竹知道如何行动。可是,假如在它进入右边狭缝前的那一刹那,

有人关闭了另一道狭缝,也就是左边的那道狭缝,那时会发生什么情形呢?”

微粒有点脸色发白。

“那时候,”波动继续说,“就没有双缝了,只有单缝。电子穿过一条缝,就无所谓什么

干涉条纹。也就是说,当左边狭缝关闭的一刹那,电子的概率必须立刻从干涉模式转换成

普通模式,变成一条长狭带。”

“现在,我倒请问,电子是如何在穿过狭缝前的一刹那,及时地得知另一条狭缝关闭这个

事实的呢?要知道它可是一个小得不能再小的电子啊,另一条狭缝距离它是如此遥远,就

像从上海隔着大洋遥望洛杉矶。它如何能够瞬间作出反应,修改自己的概率分布呢?除非

它收到了某种瞬时传播来的信号,怎么,你想开始反对相对论了吗?”

“好吧,”微粒不服气地说,“那么,我倒想听听你的解释。”

“很简单,”波动说,“电子是一个在空间中扩散开去的波,它同时穿过了两条狭缝,当

然,这也就是它造成完美干涉的原因了。如果你关闭一个狭缝,那么显然就关闭了一部分

波的路径,这时就谈不上干涉了。”

“听起来很不错。”微粒说,“照你这么说,ψ是某种实际的波,它穿过两道狭缝,完全

确定而连续地分布着,一直到击中感应屏前。不过,之后呢?之后发生了什么事?”

“之后……”波动也有点语塞,“之后,出于某种原因,ψ收缩成了一个小点。”

“哈,真奇妙。”微粒故意把声音拉长以示讽刺,“你那扩散而连续的波突然变成了一个

小点!请问发生了什么事呢?波动家族突然全体罢工了?”

波动气得面红耳赤,它争辩道:“出于某种我们尚不清楚的机制……”

“好吧,”微粒不耐烦地说,“实践是检验真理的唯一标准是吧?既然我说电子只通过了

一条狭缝,而你硬说它同时通过两条狭缝,那么搞清我们俩谁对谁错不是很简单吗?我们

只要在两道狭缝处都安装上某种仪器,让它在有粒子――或者波,不论是什么――通过时

记录下来或者发出警报,那不就成了?这种仪器又不是复杂而不可制造的。”

波动用一种奇怪的眼光看着微粒,良久,它终于说:“不错,我们可以装上这种仪器。我

承认,一旦我们试图测定电子究竟通过了哪条缝时,我们永远只会在其中的一处发现电子

。两个仪器不会同时响。”

微粒放声大笑:“你早说不就得了?害得我们白费了这么多口水!怎么,这不就证明了,

电子只可能是一个粒子,它每次只能通过一条狭缝吗?你还跟我唠叨个什么!”但是它渐

渐发现气氛有点不对劲,终于它笑不出来了。

“怎么?”它瞪着波动说。

波动突然咧嘴一笑:“不错,每次我们只能在一条缝上测量到电子。但是,你要知道,一

旦我们展开这种测量的时候,干涉条纹也就消失了……”

……

时间是1927年2月,哥本哈根仍然是春寒料峭,大地一片冰霜。玻尔坐在他的办公室里若

有所思:粒子还是波呢?5个月前,薛定谔的那次来访还历历在目,整个哥本哈根学派为

了应付这场硬仗,花了好些时间去钻研他的波动力学理论,但现在,玻尔突然觉得,这个

波动理论非常出色啊。它简洁,明确,看起来并不那么坏。在写给赫维西(Hevesy)的信

里,玻尔已经把它称作“一个美妙的理论”。尤其是有了波恩的概率解释之后,玻尔已经

毫不犹豫地准备接受这一理论并把它当作量子论的基础了。

嗯,波动,波动。玻尔知道,海森堡现在对于这个词简直是条件反射似地厌恶。在他的眼

里只有矩阵数学,谁要是跟他提起薛定谔的波他准得和谁急,连玻尔本人也不例外。事实

上,由于玻尔态度的转变,使得向来亲密无间的哥本哈根派内部第一次产生了裂痕。海森

堡……他在得知玻尔的意见后简直不敢相信自己的耳朵。现在,气氛已经闹得够僵了,玻

尔为了不让事态恶化,准备离开丹麦去挪威度个长假。过去的1926年就是在无尽的争吵中

度过的,那一整年玻尔只发表了一篇关于自旋的小文章,是时候停止争论了。

但是,粒子?波?那个想法始终在他脑中缠绕不去。

进来一个人,是他的另一位助手奥斯卡•克莱恩(Oskar Klein)。在过去的一年里

他的成就斐然,他不仅成功地把薛定谔方程相对论化了,还在其中引进了“第五维度”的

思想,这得到了老洛伦兹的热情赞扬。不管怎么说,他可算哥本哈根最熟悉量子波动理论

的人之一了。有他助阵,玻尔更加相信,海森堡实在是持有一种偏见,波动理论是不可偏

废的。

“要统一,要统一。”玻尔喃喃地说。克莱恩抬起头来看他:“您对波动理论是怎么想的

呢?”

“波,电子无疑是个波。”玻尔肯定地说。

“哦,那样说来……”

“但是,”玻尔打断他,“它同时又不是个波。从BKS倒台以来,我就隐约地猜到了。”

克莱恩笑了:“您打算发表这一观点吗?”

“不,还不是时候。”

“为什么?”

玻尔叹了一口气:“克莱恩,我们的对手非常强大……非常强大,我还没有准备好……”

(注:老的说法认为,互补原理只有在不确定原理提出后才成型。但现在学者们都同意,

这一思想有着复杂的来源,为了把重头戏留给下一章,我在这里先带一笔波粒问题。)

第七章 不确定性

我们的史话说到这里,是时候回顾一下走过的路程了。我们已经看到煊赫一时的经典物理

大厦如何忽喇喇地轰然倾倒,我们已经看到以黑体问题为导索,普朗克的量子假设是如何

点燃了新革命的星星之火。在这之后,爱因斯坦的光量子理论赋予了新生的量子以充实的

力量,让它第一次站起身来傲视群雄,而玻尔的原子理论借助了它的无穷能量,开创出一

片崭新的天地来。

我们也已经讲到,关于光的本性,粒子和波动两种理论是如何从300年前开始不断地交锋

,其间兴废存亡有如白云苍狗,沧海桑田。从德布罗意开始,这种本质的矛盾成为物理学

的基本问题,而海森堡从不连续性出发创立了他的矩阵力学,薛定谔沿着另一条连续性的

道路也发现了他的波动方程。这两种理论虽然被数学证明是同等的,但是其物理意义却引

起了广泛的争论,波恩的概率解释更是把数百年来的决定论推上了怀疑的舞台,成为浪尖

上的焦点。而另一方面,波动和微粒的战争现在也到了最关键的时候。

接下去,物理学中将会发生一些真正奇怪的事情。它将把人们的哲学观改造成一种似是而

非的疯狂理念,并把物理学本身变成一个大漩涡。20世纪最著名的争论即将展开,其影响

一直延绵到今日。我们已经走了这么长的路,现在都筋疲力尽,委顿不堪,可是我们却已

经无法掉头。回首处,白云遮断归途,回到经典理论那温暖的安乐窝中已经是不可能的了

,摆在我们眼前的,只有一条漫长而崎岖的道路,一直通向遥远而未知的远方。现在,就

让我们鼓起最大的勇气,跟着物理学家们继续前进,去看看隐藏在这道路尽头的,究竟是

怎样的一副景象。

我们这就回到1927年2月,那个神奇的冬天。过去的几个月对于海森堡来说简直就像一场

恶梦,越来越多的人转投向薛定谔和他那该死的波动理论一方,把他的矩阵忘得个一干二

净。海森堡当初的那些出色的论文,现在给人们改写成波动方程的另类形式,这让他尤其

不能容忍。他后来给泡利写信说:“对于每一份矩阵的论文,人们都把它改写成‘共轭’

的波动形式,这让我非常讨厌。我想他们最好两种方法都学学。”

但是,最让他伤心的,无疑是玻尔也转向了他的对立面。玻尔,那个他视为严师、慈父、

良友的玻尔,那个他们背后称作“量子论教皇”的玻尔,那个哥本哈根军团的总司令和精

神领袖,现在居然反对他!这让海森堡感到无比的委屈和悲伤。后来,当玻尔又一次批评

他的理论时,海森堡甚至当真哭出了眼泪。对海森堡来说,玻尔在他心目中的地位是独一

无二的,失去了他的支持,海森堡感觉就像在河中游水的小孩子失去了大人的臂膀,有种

孤立无援的感觉。

不过,现在玻尔已经去挪威度假了,他大概在滑雪吧?海森堡记得玻尔的滑雪水平拙劣得

很,不禁微笑一下。玻尔已经不能提供什么帮助了,他现在和克莱恩抱成一团,专心致志

地研究什么相对论化的波动。波动!海森堡哼了一声,打死他他也不承认,电子应该解释

成波动。不过事情还不至于糟糕到顶,他至少还有几个战友:老朋友泡利,哥廷根的约尔

当,还有狄拉克――他现在也到哥本哈根来访问了。

不久前,狄拉克和约尔当分别发展了一种转换理论,这使得海森堡可以方便地用矩阵来处

理一些一直用薛定谔方程来处理的概率问题。让海森堡高兴的是,在狄拉克的理论里,不

连续性被当成了一个基础,这更让他相信,薛定谔的解释是靠不住的。但是,如果以不连

续性为前提,在这个体系里有些变量就很难解释,比如,一个电子的轨迹总是连续的吧?

海森堡尽力地回想矩阵力学的创建史,想看看问题出在哪里。我们还记得,海森堡当时的

假设是:整个物理理论只能以可被观测到的量为前提,只有这些变量才是确定的,才能构

成任何体系的基础。不过海森堡也记得,爱因斯坦不太同意这一点,他受古典哲学的熏陶

太浓,是一个无可救要的先验主义者。

“你不会真的相信,只有可观察的量才能有资格进入物理学吧?”爱因斯坦曾经这样问他

“为什么不呢?”海森堡吃惊地说,“你创立相对论时,不就是因为‘绝对时间’不可观

察而放弃它的吗?”

爱因斯坦笑了:“好把戏不能玩两次啊。你要知道在原则上,试图仅仅靠可观察的量来建

立理论是不对的。事实恰恰相反:是理论决定了我们能够观察到的东西。”

是吗?理论决定了我们观察到的东西?那么理论怎么解释一个电子在云室中的轨迹呢?在

薛定谔看来,这是一系列本征态的叠加,不过,forget him!海森堡对自己说,还是用我

们更加正统的矩阵来解释解释吧。可是,矩阵是不连续的,而轨迹是连续的,而且,所谓

“轨迹”早就在矩阵创立时被当作不可观测的量被抛弃了……

窗外夜阑人静,海森堡冥思苦想而不得要领。他愁肠百结,辗转难寐,决定起身到离玻尔

研究所不远的Faelled公园去散散步。深夜的公园空无一人,晚风吹在脸上还是凛冽寒冷

,不过却让人清醒。海森堡满脑子都装满了大大小小的矩阵,他又想起矩阵那奇特的乘法

规则:

p×q ≠ q×p

理论决定了我们观察到的东西?理论说,p×q ≠ q×p,它决定了我们观察到的什么东西

呢?

I×II什么意思?先搭乘I号线再转乘II号线。那么,p×q什么意思?p是动量,q是位置,

这不是说……

似乎一道闪电划过夜空,海森堡的神志突然一片清澈空明。

p×q ≠ q×p,这不是说,先观测动量p,再观测位置q,这和先观测q再观测p,其结果是

不一样的吗?

等等,这说明了什么?假设我们有一个小球向前运动,那么在每一个时刻,它的动量和位

置不都是两个确定的变量吗?为什么仅仅是观测次序的不同,其结果就会产生不同呢?海

森堡的手心捏了一把汗,他知道这里藏着一个极为重大的秘密。这怎么可能呢?假如我们

要测量一个矩形的长和宽,那么先测量长还是先测量宽,这不是一回事吗?

除非……

除非测量动量p这个动作本身,影响到了q的数值。反过来,测量q的动作也影响p的值。可

是,笑话,假如我同时测量p和q呢?

海森堡突然间像看见了神启,他豁然开朗。

p×q ≠ q×p,难道说,我们的方程想告诉我们,同时观测p和q是不可能的吗?理论不但

决定我们能够观察到的东西,它还决定哪些是我们观察不到的东西!

但是,我给搞糊涂了,不能同时观测p和q是什么意思?观测p影响q?观测q影响p?我们到

底在说些什么?如果我说,一个小球在时刻t,它的位置坐标是10米,速度是5米/秒,这

有什么问题吗?

“有问题,大大地有问题。”海森堡拍手说。“你怎么能够知道在时刻t,某个小球的位

置是10米,速度是5米/秒呢?你靠什么知道呢?”

“靠什么?这还用说吗?观察呀,测量呀。”

“关键就在这里!测量!”海森堡敲着自己的脑壳说,“我现在全明白了,问题就出在测

量行为上面。一个矩形的长和宽都是定死的,你测量它的长的同时,其宽绝不会因此而改

变,反之亦然。再来说经典的小球,你怎么测量它的位置呢?你必须得看到它,或者用某

种仪器来探测它,不管怎样,你得用某种方法去接触它,不然你怎么知道它的位置呢?就

拿‘看到’来说吧,你怎么能‘看到’一个小球的位置呢?总得有某个光子从光源出发,

撞到这个球身上,然后反弹到你的眼睛里吧?关键是,一个经典小球是个庞然大物,光子

撞到它就像蚂蚁撞到大象,对它的影响小得可以忽略不计,绝不会影响它的速度。正因为

如此,我们大可以测量了它的位置之后,再从容地测量它的速度,其误差微不足道。

“但是,我们现在在谈论电子!它是如此地小而轻,以致于光子对它的撞击决不能忽略不

计了。测量一个电子的位置?好,我们派遣一个光子去执行这个任务,它回来怎么报告呢

?是的,我接触到了这个电子,但是它给我狠狠撞了一下后,飞到不知什么地方去了,它

现在的速度我可什么都说不上来。看,为了测量它的位置,我们剧烈地改变了它的速度,

也就是动量。我们没法同时既准确地知道一个电子的位置,同时又准确地了解它的动量。

海森堡飞也似地跑回研究所,埋头一阵苦算,最后他得出了一个公式:

△p×△q > h/2π

△p和△q分别是测量p和测量q的误差,h是普朗克常数。海森堡发现,测量p和测量q的误

差,它们的乘积必定要大于某个常数。如果我们把p测量得非常精确,也就是说△p非常小

,那么相应地,△q必定会变得非常大,也就是说我们关于q的知识就要变得非常模糊和不

确定。反过来,假如我们把位置q测得非常精确,p就变得摇摆不定,误差急剧增大。

假如我们把p测量得100%地准确,也就是说△p=0,那么△q就要变得无穷大。这就是说,

假如我们了解了一个电子动量p的全部信息,那么我们就同时失去了它位置q的所有信息,

我们一点都不知道,它究竟身在何方,不管我们怎么安排实验都没法做得更好。鱼与熊掌

不能得兼,要么我们精确地知道p而对q放手,要么我们精确地知道q而放弃对p的全部知识

,要么我们折衷一下,同时获取一个比较模糊的p和比较模糊的q。

p和q就像一对前世冤家,它们人生不相见,动如参与商,处在一种有你无我的状态。不管

我们亲近哪个,都会同时急剧地疏远另一个。这种奇特的量被称为“共轭量”,我们以后

会看到,这样的量还有许多。

海森堡的这一原理于1927年3月23日在《物理学杂志》上发表,被称作Uncertainty

Principle。当它最初被翻译成中文的时候,被十分可爱地译成了“测不准原理”,不过

现在大多数都改为更加具有普遍意义的“不确定性原理”。

家园 【史话】决战紫禁之巅之爱玻之战(7-2)(7-3)

不确定性原理……不确定?我们又一次遇到了这个讨厌的词。还是那句话,这个词在物理

学中是不受欢迎的。如果物理学什么都不能确定,那我们还要它来干什么呢?本来波恩的

概率解释已经够让人烦恼的了――即使给定全部条件,也无法预测结果。现在海森堡干得

更绝,给定全部条件?这个前提本身都是不可能的,给定了其中一部分条件,另一部分条

件就要变得模糊不清,无法确定。给定了p,那么我们就要对q说拜拜了。

这可不太美妙,一定有什么地方搞错了。我们测量了p就无法测量q?我倒不死心,非要来

试试看到底行不行。好吧,海森堡接招,还记得威尔逊云室吧?你当初不就是为了这个问

题苦恼吗?透过云室我们可以看见电子运动的轨迹,那么通过不断地测量它的位置,我们

当然能够计算出它的瞬时速度来,这样不就可以同时知道它的动量了吗?

“这个问题,”海森堡笑道,“我终于想通了。电子在云室里留下的并不是我们理解中的

精细的‘轨迹’,事实上那只是一连串凝结的水珠。你把它放大了看,那是不连续的,一

团一团的‘虚线’,根本不可能精确地得出位置的概念,更谈不上违反不确定原理。”

“哦?是这样啊。那么我们就仔细一点,把电子的精细轨迹找出来不就行了?我们可以用

一个大一点的显微镜来干这活,理论上不是不可能的吧?”

“对了,显微镜!”海森堡兴致勃勃地说,“我正想说显微镜这事呢。就让我们来做一个

思维实验(Gedanken-experiment),想象我们有一个无比强大的显微镜吧。不过,再厉

害的显微镜也有它基本的原理啊,要知道,不管怎样,如果我们用一种波去观察比它的波

长还要小的事物的话,那就根本谈不上精确了,就像用粗笔画不出细线一样。如果我们想

要观察电子这般微小的东西,我们必须要采用波长很短的光。普通光不行,要用紫外线,

X射线,甚至γ射线才行。”

“好吧,反正是思维实验用不着花钱,我们就假设上头破天荒地拨了巨款,给我们造了一

台最先进的γ射线显微镜吧。那么,现在我们不就可以准确地看到电子的位置了吗?”

“可是,”海森堡指出,“你难道忘了吗?任何探测到电子的波必然给电子本身造成扰动

。波长越短的波,它的频率就越高,是吧?大家都应该还记得普朗克的公式E = hν,频

率一高的话能量也相应增强,这样给电子的扰动就越厉害,同时我们就更加无法了解它的

动量了。你看,这完美地满足不确定性原理。”

“你这是狡辩。好吧我们接受现实,每当我们用一个光子去探测电子的位置,就会给它造

成强烈的扰动,让它改变方向速度,向另一个方向飞去。可是,我们还是可以采用一些聪

明的,迂回的方法来实现我们的目的啊。比如我们可以测量这个反弹回来的光子的方向速

度,从而推导出它对电子产生了何等的影响,进而导出电子本身的方向速度。怎样,这不

就破解了你的把戏吗?”

“还是不行。”海森堡摇头说,“为了达到那样高的灵敏度,我们的显微镜必须有一块很

大直径的透镜才行。你知道,透镜把所有方向来的光都聚集到一个焦点上,这样我们根本

就无法分辨出反弹回来的光子究竟来自何方。假如我们缩小透镜的直径以确保光子不被聚

焦,那么显微镜的灵敏度又要变差而无法胜任此项工作。所以你的小聪明还是不奏效。”

“真是邪门。那么,观察显微镜本身的反弹怎样?”

“一样道理,要观察这样细微的效应,就要用波长短的光,所以它的能量就大,就给显微

镜本身造成抹去一切的扰动……”

等等,我们并不死心。好吧,我们承认,我们的观测器材是十分粗糙的,我们的十指笨拙

,我们的文明才几千年历史,现代科学更是仅创立了300年不到的时间。我们承认,就我

们目前的科技水平来说,我们没法同时观测到一个细小电子的位置和动量,因为我们的仪

器又傻又笨。可是,这并不表明,电子不同时具有位置和动量啊,也许在将来,哪怕遥远

的将来,我们会发展出一种尖端科技,我们会发明极端精细的仪器,从而准确地测出电子

的位置和动量呢?你不能否认这种可能性啊。

“话不是这样说的。”海森堡若有所思地说,“这里的问题是理论限制了我们能够观测到

的东西,而不是实验导致的误差。同时测量到准确的动量和位置在原则上都是不可能的,

不管科技多发达都一样。就像你永远造不出永动机,你也永远造不出可以同时探测到p和q

的显微镜来。不管今后我们创立了什么理论,它们都必须服从不确定性原理,这是一个基

本原则,所有的后续理论都要在它的监督下才能取得合法性。”

海森堡的这一论断是不是太霸道了点?而且,这样一来物理学家的脸不是都给丢尽了吗?

想象一下公众的表现吧:什么,你是一个物理学家?哦,我真为你们惋惜,你们甚至不知

道一个电子的动量和位置!我们家汤米至少还知道怎么摆弄他的皮球。

不过,我们还是要摆事实,讲道理,以德服人。一个又一个的思想实验被提出来,可是我

们就是没法既精确地测量出电子的动量,同时又精确地得到它的位置。两者的误差之乘积

必定要大于那个常数,也就是h除以2π。幸运的是,我们都记得h非常小,只有6.626×10

^-34焦耳秒,那么假如△p和△q的量级差不多,它们各自便都在10^-17这个数量级上。我

们现在可以安慰一下不明真相的群众:事情并不是那么糟糕,这种效应只有在电子和光子

的尺度上才变得十分明显。对于汤米玩的皮球,10^-17简直是微不足道到了极点,根本就

没法感觉出来。汤米可以安心地拍他的皮球,不必担心因为测不准它的位置而把它弄丢了

不过对于电子尺度的世界来说,那可就大大不同了。在上一章的最后,我们曾经假想自己

缩小到电子大小去一探原子里的奥秘,那时我们的身高只有10^-23米。现在,妈妈对于我

们淘气的行为感到担心,想测量一下我们到了哪里,不过她们注定要失望了:测量的误差

达到10^-17米,是我们本身高度的100万倍!100万倍的误差意味着什么,假如我们平时身

高1米75,这个误差就达到175万米,也就是1750公里,母亲们得在整条京沪铁路沿线到处

寻找我们才行。“测不准”变得名副其实了。

在任何时候,大自然都固执地坚守着这一底线,绝不让我们有任何机会可以同时得到位置

和动量的精确值。任凭我们机关算尽,花样百出,它总是比我们高明一筹,每次都狠狠的

把我们的小聪明击败。不能测量电子的位置和动量?我们来设计一个极小极小的容器,它

内部只能容纳一个电子,不留下任何多余的空间,这下如何?电子不能乱动了吧?可是,

首先这种容器肯定是造不出来的,因为它本身也必定由电子组成,所以它本身也必然要有

位置的起伏,使内部的空间涨涨落落。退一步来说,就算可以,在这种情况下,电子也会

神秘地渗过容器壁,出现在容器外面,像传说中穿墙而过的崂山道士。不确定性原理赋予

它这种神奇的能力,冲破一切束缚。还有一种办法,降温。我们都知道原子在不停地振动

,温度是这种振动的宏观表现,当温度下降到绝对零度,理论上原子就完全静止了。那时

候动量确定为零,只要测量位置就可以了吧?可惜,绝对零度是无法达到的,无论如何努

力,原子还是拼命地保有最后的一点内能不让我们测准它的动量。不管是谁,也无法让原

子完全静止下来,传说中的圣斗士也不行――他们无法克服不确定性原理。

动量p和位置q,它们真正地是“不共戴天”。只要一个量出现在宇宙中,另一个就神秘地

消失。要么,两个都以一种模糊不清的面目出现。海森堡很快又发现了另一对类似的仇敌

,它们是能量E和时间t。只要能量E测量得越准确,时刻t就愈加模糊;反过来,时间t测

量得愈准确,能量E就开始大规模地起伏不定。而且,它们之间的关系遵守相同的不确定

性规则:

△E×△t > h/2π

各位看官,我们的宇宙已经变得非常奇妙了。各种物理量都遵循着海森堡的这种不确定性

原理,此起彼伏,像神秘的大海中不断升起和破灭的泡沫。在古人看来,“空”就是空荡

荡无一物。不过后来人们知道了,看不见的空气中也有无数分子,“空”应该指抽空了空

气的真空。再后来,人们觉得各种场,从引力场到电磁场,也应该排除在“空”的概念之

外,它应该仅仅指空间本身而已。

但现在,这个概念又开始混乱了。首先爱因斯坦的相对论告诉我们空间本身也能扭曲变形

,事实上引力只不过是它的弯曲而已。而海森堡的不确定性原理展现了更奇特的场景:我

们知道t测量得越准确,E就越不确定。所以在非常非常短的一刹那,也就是t非常确定的

一瞬间,即使真空中也会出现巨大的能量起伏。这种能量完全是靠着不确定性而凭空出现

的,它的确违反了能量守恒定律!但是这一刹那极短,在人们还没有来得及发现以前,它

又神秘消失,使得能量守恒定律在整体上得以维持。间隔越短,t就越确定,E就越不确定

,可以凭空出现的能量也就越大。

所以,我们的真空其实无时无刻不在沸腾着,到处有神秘的能量产生并消失。爱因斯坦告

诉我们,能量和物质可以互相转换,所以在真空中,其实不停地有一些“幽灵”物质在出

没,只不过在我们没有抓住它们之前,它们就又消失在了另一世界。真空本身,就是提供

这种涨落的最好介质。

现在如果我们谈论“空”,应该明确地说:没有物质,没有能量,没有时间,也没有空间

。这才是什么都没有,它根本不能够想象(你能想象没有空间是什么样子吗?)。不过大

有人说,这也不算“空”,因为空间和时间本身似乎可以通过某种机制从一无所有中被创

造出来,我可真要发疯了,那究竟怎样才算“空”呢?

*********

饭后闲话:无中生有

曾几何时,所有的科学家都认为,无中生有是绝对不可能的。物质不能被凭空制造,能量

也不能被凭空制造,遑论时空本身。但是不确定性原理的出现把这一切旧观念都摧枯拉朽

一般地粉碎了。

海森堡告诉我们,在极小的空间和极短的时间里,什么都是有可能发生的,因为我们对时

间非常确定,所以反过来对能量就非常地不确定。能量物质可以逃脱物理定律的束缚,自

由自在地出现和消失。但是,这种自由的代价就是它只能限定在那一段极短的时间内,当

时刻一到,灰姑娘就要现出原形,这些神秘的物质能量便要消失,以维护质能守恒定律在

大尺度上不被破坏。

不过上世纪60年代末,有人想到了一种可能性:引力的能量是负数(因为引力是吸力,假

设无限远的势能是0,那么当物体靠近后因为引力做功使得其势能为负值),所以在短时

间内凭空生出的物质能量,它们之间又可以形成引力场,其产生的负能量正好和它们本身

抵消,使得总能量仍然保持为0,不破坏守恒定律。这样,物质就真的从一无所有中产生

了。

许多人都相信,我们的宇宙本身就是通过这种机制产生的。量子效应使得一小块时空突然

从根本没有时空中产生,然后因为各种力的作用,它突然指数级地膨胀起来,在瞬间扩大

到整个宇宙的尺度。MIT的科学家阿伦•古斯(Alan Guth)在这种想法上出发,创

立了宇宙的“暴涨理论”(Inflation)。在宇宙创生的极早期,各块空间都以难以想象

的惊人速度暴涨,这使得宇宙的总体积增大了许多许多倍。这就可以解释为什么今天它的

结构在各个方向看来都是均匀同一的。

暴涨理论创立以来也已经出现多个版本,不过很难确定地证实这个理论究竟是否正确,因

为宇宙毕竟不像我们的实验室可以随心所欲地观测研究。但大多数物理学家对其还是偏爱

的,认为这是一个有希望的理论。1998年,古斯还出版了一本通俗的介绍暴涨的书,他最

爱说的一句话是:“宇宙本身就是一顿免费午餐。”意思是宇宙是从一无所有中而来的。

不过,假如再苛刻一点,这还不能算严格的“无中生有”。因为就算没有物质,没有时间

空间,我们还有一个前提:存在着物理定律!相对论和量子论的各种规则,比如不确定原

理本身又是如何从无中生出的呢?或者它们不言而喻地存在?我们越说越玄了,这就打住

吧。

当海森堡完成了他的不确定性原理后,他迅即写信给泡利和远在挪威的玻尔,把自己的想

法告诉他们。收到海森堡的信后,玻尔立即从挪威动身返回哥本哈根,准备就这个问题和

海森堡展开深入的探讨。海森堡可能以为,这样伟大的一个发现必定能打动玻尔的心,让

他同意自己对于量子力学的一贯想法。可是,他却大大地错了。

在挪威,玻尔于滑雪之余好好地思考了一下波粒问题,新想法逐渐在他脑中定型了。当他

看到海森堡的论文,他自然而然地用这种想法去印证整个结论。他问海森堡,这种不确定

性是从粒子的本性而来,还是从波的本性导出的呢?海森堡一愣,他压根就没考虑过什么

波。当然是粒子,由于光子击中了电子而造成了位置和动量的不确定,这不是明摆的吗?

玻尔很严肃地摇头,他拿海森堡想象的那个巨型显微镜开刀,证明在很大程度上不确定性

不单单出自不连续的粒子性,更是出自波动性。我们在前面讨论过德布罗意波长公式λ=

h/mv,mv就是动量p,所以p= h/λ,对于每一个动量p来说,总是有一个波长的概念伴随

着它。对于E-t关系来说,E= hν,依然有频率ν这一波动概念在里面。海森堡对此一口

拒绝,要让他接受波动性可不是一件容易的事情,对海森堡的顽固玻尔显然开始不耐烦了

,他明确地对海森堡说:“你的显微镜实验是不对的”,这把海森堡给气哭了。两人大吵

一场,克莱恩当然帮着玻尔,这使得哥本哈根内部的气氛闹得非常尖锐。从物理问题出发

,后来几乎变成了私人误会,以致海森堡不得不把写给泡利的信要回去以作出澄清。最后

,泡利本人亲自跑去丹麦,这才最后平息了事件的余波。

对海森堡来说不幸的是,在显微镜问题上的确是他错了。海森堡大概生来患有某种“显微

镜恐惧症”,一碰到显微镜就犯晕。当年,他在博士论文答辩里就搞不清最基本的显微镜

分辨度问题,差点没拿到学位。这次玻尔也终于让他意识到,不确定性是建立在波和粒子

的双重基础上的,它其实是电子在波和粒子间的一种摇摆:对于波的属性了解得越多,关

于粒子的属性就了解得越少。海森堡最后终于接受了玻尔的批评,给他的论文加了一个附

注,声明不确定性其实同时建筑在连续性和不连续性两者之上,并感谢玻尔指出了这一点

玻尔也在这场争论中有所收获,他发现不确定原理的普遍意义原来比他想象中的要大。他

本以为,这只是一个局部的原理,但现在他领悟到这个原理是量子论中最核心的基石之一

。在给爱因斯坦的信中,玻尔称赞了海森堡的理论,说他“用一种极为漂亮的手法”显示

了不确定如何被应用在量子论中。复活节长假后,双方各退一步,局面终于海阔天空起来

。海森堡写给泡利的信中又恢复了良好的心情,说是“又可以单纯地讨论物理问题,忘记

别的一切”了。的确,兄弟阋于墙,也要外御其侮,哥本哈根派现在又团结得像一块坚石

了,他们很快就要共同面对更大的挑战,并把哥本哈根这个名字深深镌刻在物理学的光辉

历史上。

不过,话又说回来。波动性,微粒性,从我们史话的一开始,这两个词已经深深困扰我们

,一直到现在。好吧,不确定性同时建立在波动性和微粒性上……可这不是白说吗?我们

的耐心是有限的,不如摊开天窗说亮话吧,这个该死的电子到底是个粒子还是波那?

粒子还是波,真是令人感慨万千的话题啊。这是一出300年来的传奇故事,其中悲欢起落

,穿插着物理史上最伟大的那些名字:牛顿、胡克、惠更斯、杨、菲涅尔、傅科、麦克斯

韦、赫兹、汤姆逊、爱因斯坦、康普顿、德布罗意……恩恩怨怨,谁又能说得明白?我们

处在一种进退维谷的境地中,一方面双缝实验和麦氏理论毫不含糊地揭示出光的波动性,

另一方面光电效应,康普顿效应又同样清晰地表明它是粒子。就电子来说,玻尔的跃迁,

原子里的光谱,海森堡的矩阵都强调了它不连续的一面,似乎粒子性占了上风,但薛定谔

的方程却又大肆渲染它的连续性,甚至把波动的标签都贴到了它脸上。

怎么看,电子都没法不是个粒子;怎么看,电子都没法不是个波。

这该如何是好呢?

当遇到棘手的问题时,最好的办法还是问问咱们的偶像,无所不能的歇洛克•福尔

摩斯先生。他是这样说的:“我的方法,就建立在这样一种假设上面:当你把一切不可能

的结论都排除之后,那剩下的,不管多么离奇,也必然是事实。”(《新探案•皮

肤变白的军人》)

真是至理名言啊。那么,电子不可能不是个粒子,它也不可能不是波。那剩下的,唯一的

可能性就是……

它既是个粒子,同时又是个波!

可是,等等,这太过分了吧?完全没法叫人接受嘛。什么叫“既是个粒子,同时又是波”

?这两种图像分明是互相排斥的呀。一个人可能既是男的,又是女的吗(太监之类的不算

)?这种说法难道不自相矛盾吗?

不过,要相信福尔摩斯,更要相信玻尔,因为玻尔就是这样想的。毫无疑问,一个电子必

须由粒子和波两种角度去作出诠释,任何单方面的描述都是不完全的。只有粒子和波两种

概念有机结合起来,电子才成为一个有血有肉的电子,才真正成为一种完备的图像。没有

粒子性的电子是盲目的,没有波动性的电子是跛足的。

这还是不能让我们信服啊,既是粒子又是波?难以想象,难道电子像一个幽灵,在粒子的

周围同时散发出一种奇怪的波,使得它本身成为这两种状态的叠加?谁曾经亲眼目睹这种

恶梦般的场景吗?出来作个证?

“不,你理解得不对。”玻尔摇头说,“任何时候我们观察电子,它当然只能表现出一种

属性,要么是粒子要么是波。声称看到粒子-波混合叠加的人要么是老花眼,要么是纯粹

在胡说八道。但是,作为电子这个整体概念来说,它却表现出一种波-粒的二像性来,它

可以展现出粒子的一面,也可以展现出波的一面,这完全取决于我们如何去观察它。我们

想看到一个粒子?那好,让它打到荧光屏上变成一个小点。看,粒子!我们想看到一个波

?也行,让它通过双缝组成干涉图样。看,波!”

奇怪,似乎有哪里不对,却说不出来……好吧,电子有时候变成电子的模样,有时候变成

波的模样,嗯,不错的变脸把戏。可是,撕下它的面具,它本来的真身究竟是个什么呢?

“这就是关键!这就是你我的分歧所在了。”玻尔意味深长地说,“电子的‘真身’?或

者换几个词,电子的原型?电子的本来面目?电子的终极理念?这些都是毫无意义的单词

,对于我们来说,唯一知道的只是每次我们看到的电子是什么。我们看到电子呈现出粒子

性,又看到电子呈现出波动性,那么当然我们就假设它是粒子和波的混合体。我一点都不

关心电子‘本来’是什么,我觉得那是没有意义的。事实上我也不关心大自然‘本来’是

什么,我只关心我们能够‘观测’到大自然是什么。电子又是个粒子又是个波,但每次我

们观察它,它只展现出其中的一面,这里的关键是我们‘如何’观察它,而不是它‘究竟

’是什么。”

玻尔的话也许太玄妙了,我们来通俗地理解一下。现在流行手机换彩壳,我昨天心情好,

就配一个shining的亮银色,今天心情不好,换一个比较有忧郁感的蓝色。咦奇怪了,为

什么我的手机昨天是银色的,今天变成蓝色了呢?这两种颜色不是互相排斥的吗?我的手

机怎么可能又是银色,又是蓝色呢?很显然,这并不是说我的手机同时展现出银色和蓝色

,变成某种稀奇的“银蓝”色,它是银色还是蓝色,完全取决于我如何搭配它的外壳。我

昨天决定这样装配它,它就呈现出银色,而今天改一种方式,它就变成蓝色。它是什么颜

色,取决于我如何装配它!

但是,如果你一定要打破砂锅地问:我的手机“本来”是什么颜色?那可就糊涂了。假如

你指的是它原装出厂时配着什么外壳,我倒可以告诉你。不过要是你强调是哲学意义上的

“本来”,或者“理念中手机的颜色”到底是什么,我会觉得你不可理喻。真要我说,我

觉得它“本来”没什么颜色,只有我们给它装上某种外壳并观察它,它才展现出某种颜色

来。它是什么颜色,取决于我们如何观察它,而不是取决于它“本来”是什么颜色。我觉

得,讨论它“本来的颜色”是痴人说梦。

再举个例子,大家都知道“白马非马”的诡辩,不过我们不讨论这个。我们问:这匹马到

底是什么颜色呢?你当然会说:白色啊。可是,也许你身边有个色盲,他会争辩说:不对

,是红色!大家指的是同一匹马,它怎么可能又是白色又是红色呢?你当然要说,那个人

在感觉颜色上有缺陷,他说的不是马本来的颜色,可是,谁又知道你看到的就一定是正确

的颜色呢?假如世上有一半色盲,谁来分辨哪一半说的是“真相”呢?不说色盲,我们戴

上一副红色眼镜,这下看出去的马也变成了红色吧?它怎么刚刚是白色,现在是红色呢?

哦,因为你改变了观察方式,戴上了眼镜。那么哪一种方式看到的是真实呢?天晓得,庄

周做梦变成了蝴蝶还是蝴蝶做梦变成了庄周?你戴上眼镜看到的是真实还是脱下眼镜看到

的是真实?

我们的结论是,讨论哪个是“真实”毫无意义。我们唯一能说的,是在某种观察方式确定

的前提下,它呈现出什么样子来。我们可以说,在我们运用肉眼的观察方式下,马呈现出

白色。同样我们也可以说,在戴上眼镜的观察方式下,马呈现出红色。色盲也可以声称,

在他那种特殊构造的感光方式观察下,马是红色。至于马“本来”是什么色,完全没有意

义。甚至我们可以说,马“本来的颜色”是子虚乌有的。我们大多数人说马是白色,只不

过我们大多数人采用了一种类似的观察方式罢了,这并不指向一种终极真理。

电子也是一样。电子是粒子还是波?那要看你怎么观察它。如果采用光电效应的观察方式

,那么它无疑是个粒子;要是用双缝来观察,那么它无疑是个波。它本来到底是个粒子还

是波呢?又来了,没有什么“本来”,所有的属性都是同观察联系在一起的,让“本来”

见鬼去吧。

但是,一旦观察方式确定了,电子就要选择一种表现形式,它得作为一个波或者粒子出现

,而不能再暧昧地混杂在一起。这就像我们可怜的马,不管谁用什么方式观察,它只能在

某一时刻展现出一种颜色。从来没有人有过这样奇妙的体验:这匹马同时又是白色,又是

红色。波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电

子的两面被纳入一个整体概念中。这就是玻尔的“互补原理”(Complementary

Principle),它连同波恩的概率解释,海森堡的不确定性,三者共同构成了量子论“哥

本哈根解释”的核心,至今仍然深刻地影响我们对于整个宇宙的终极认识。

“第三次波粒战争”便以这样一种戏剧化的方式收场。而量子世界的这种奇妙结合,就是

大名鼎鼎的“波粒二象性”。

家园 记得在大学上量子力学的时候老师就说

“测不准”这个名字不好,应该叫“不确定性原理”

家园 上课的时候,没有被绕晕吧?
家园 【史话】决战紫禁之巅之爱玻之战(7-4)(7-5)

三百年硝烟散尽,波和粒子以这样一种奇怪的方式达成了妥协:两者原来是不可分割的一

个整体。就像漫画中教皇善与恶的两面,虽然在每个确定的时刻,只有一面能够体现出来

,但它们确实集中在一个人的身上。波和粒子是一对孪生兄弟,它们如此苦苦争斗,却原

来是演出了一场物理学中的绝代双骄故事,这教人拍案惊奇,唏嘘不已。

现在我们再回到上一章的最后,重温一下波和粒子在双缝前遇到的困境:电子选择左边的

狭缝,还是右边的狭缝呢?现在我们知道,假如我们采用任其自然的观测方式,它波动的

一面就占了上风。这个电子于是以某种方式同时穿过了两道狭缝,自身与自身发生干涉,

它的波函数ψ按照严格的干涉图形花样发展。但是,当它撞上感应屏的一刹那,观测方式

发生了变化!我们现在在试图探测电子的实际位置了,于是突然间,粒子性接管了一切,

这个电子凝聚成一点,按照ψ的概率随机地出现在屏幕的某个地方。

假使我们在某个狭缝上安装仪器,试图测出电子究竟通过了哪一边,注意,这是另一种完

全不同的观测方式!!!我们试图探测电子在通过狭缝时的实际位置,可是只有粒子才有

实际的位置。这实际上是我们施加的一种暗示,让电子早早地展现出粒子性。事实上,的

确只有一边的仪器将记录下它的踪影,但同时,干涉条纹也被消灭,因为波动性随着粒子

性的唤起而消失了。我们终于明白,电子如何表现,完全取决于我们如何观测它。种瓜得

瓜,种豆得豆,想记录它的位置?好,那是粒子的属性,电子善解人意,便表现出粒子性

来,同时也就没有干涉。不作这样的企图,电子就表现出波动性来,穿过两道狭缝并形成

熟悉的干涉条纹。

量子派物理学家现在终于逐渐领悟到了事情的真相:我们的结论和我们的观测行为本身大

有联系。这就像那匹马是白的还是红的,这个结论和我们用什么样的方法去观察它有关系

。有些看官可能还不服气:结论只有一个,亲眼看见的才是唯一的真实。色盲是视力缺陷

,眼镜是外部装备,这些怎么能够说是看到“真实”呢?其实没什么分别,它们不外乎是

两种不同的观测方式罢了,我们的论点是,根本不存在所谓“真实”。

好吧,现在我视力良好,也不戴任何装置,看到马是白色的。那么,它当真是白色的吗?

其实我说这话前,已经隐含了一个前提:“用人类正常的肉眼,在普通光线下看来,马呈

现出白色。”再技术化一点,人眼只能感受可见光,波长在400-760纳米左右,这些频段

的光混合在一起才形成我们印象中的白色。所以我们论断的前提就是,在400-760纳米的

光谱区感受马,它是白色的。

许多昆虫,比如蜜蜂,它的复眼所感受的光谱是大大不同的。蜜蜂看不见波长比黄光还长

的光,却对紫外线很敏感。在它看来,这匹马大概是一种蓝紫色,甚至它可能绘声绘色地

向你描绘一种难以想象的“紫外色”。现在你和蜜蜂吵起来了,你坚持这马是白色的,而

蜜蜂一口咬定是蓝紫色。你和蜜蜂谁对谁错呢?其实都对。那么,马怎么可能又是白色又

是紫色呢?其实是你们的观测手段不同罢了。对于蜜蜂来说,它也是“亲眼”见到,人并

不比蜜蜂拥有更多的正确性,离“真相”更近一点。话说回来,色盲只是对于某些频段的

光有盲点,眼镜只不过加上一个滤镜而已,本质上也是一样的,也没理由说它们看到的就

是“虚假”。

事实上,没有什么“客观真相”。讨论马本质上“到底是什么颜色”,正如我们已经指出

过的,是很无聊的行为。根本不存在一个绝对的所谓“本色”,除非你先定义观测的方式

玻尔也好,海森堡也好,现在终于都明白:谈论任何物理量都是没有意义的,除非你首先

描述你测量这个物理量的方式。一个电子的动量是什么?我不知道,一个电子没有什么绝

对的动量,不过假如你告诉我你打算怎么去测量,我倒可以告诉你测量结果会是什么。根

据测量方式的不同,这个动量可以从十分精确一直到万分模糊,这些结果都是可能的,也

都是正确的。一个电子的动量,只有当你测量时,才有意义。假如这不好理解,想象有人

在纸上画了两横夹一竖,问你这是什么字。嗯,这是一个“工”字,但也可能是横过来的

“H”,在他没告诉你怎么看之前,这个问题是没有定论的。现在,你被告知:“这个图

案的看法应该是横过来看。”这下我们明确了:这是一个大写字母H。只有观测手段明确

之后,答案才有意义。

测量!在经典理论中,这不是一个被考虑的问题。测量一块石头的重量,我用天平,用弹

簧秤,用磅秤,或者用电子秤来做,理论上是没有什么区别的。在经典理论看来,石头是

处在一个绝对的,客观的外部世界中,而我――观测者――对这个世界是没有影响的,至

少,这种影响是微小得可以忽略不计的。你测得的数据是多少,石头的“客观重量”就是

多少。但量子世界就不同了,我们已经看到,我们测量的对象都是如此微小,以致我们的

介入对其产生了致命的干预。我们本身的扰动使得我们的测量中充满了不确定性,从原则

上都无法克服。采取不同的手段,往往会得到不同的答案,它们随着不确定性原理摇摇摆

摆,你根本不能说有一个客观确定的答案在那里。在量子论中没有外部世界和我之分,我

们和客观世界天人合一,融和成为一体,我们和观测物互相影响,使得测量行为成为一种

难以把握的手段。在量子世界,一个电子并没有什么“客观动量”,我们能谈论的,只有

它的“测量动量”,而这又和我们的测量手段密切相关。

各位,我们已经身陷量子论那奇怪的沼泽中了,我只希望大家不要过于头昏脑涨,因为接

下来还有无数更稀奇古怪的东西,错过了未免可惜。我很抱歉,这几节我们似乎沉浸于一

种玄奥的哲学讨论,而且似乎还要继续讨论下去。这是因为量子革命牵涉到我们世界观的

根本变革,以及我们对于宇宙的认识方法。量子论的背后有一些非常形而上的东西,它使

得我们的理性战战兢兢,汗流浃背。但是,为了理解量子论的伟大力量,我们又无法绕开

这些而自欺欺人地盲目前进。如果你从史话的一开始跟着我一起走到了现在,我至少对你

的勇气和毅力表示赞赏,但我也无法给你更多的帮助。假如你感到困惑彷徨,那么玻尔的

名言“如果谁不为量子论而感到困惑,那他就是没有理解量子论”或许可以给你一些安慰

。而且,正如我们以后即将描述的那样,你也许应该感到非常自豪,因为爱因斯坦和你是

一个处境。

但现在,我们必须走得更远。上面一段文字只是给大家一个小小的喘息机会,我们这就继

续出发了。

如果不定义一个测量动量的方式,那么我们谈论电子动量就是没有意义的?这听上去似乎

是一种唯心主义的说法。难道我们无法测量电子,它就没有动量了吗?让我们非常惊讶和

尴尬的是,玻尔和海森堡两个人对此大点其头。一点也不错,假如一个物理概念是无法测

量的,它就是没有意义的。我们要时时刻刻注意,在量子论中观测者是和外部宇宙结合在

一起的,它们之间现在已经没有明确的分界线,是一个整体。在经典理论中,我们脱离一

个绝对客观的外部世界而存在,我们也许不了解这个世界的某些因素,但这不影响其客观

性。可如今我们自己也已经融入这个世界了,对于这个物我合一的世界来说,任何东西都

应该是可以测量和感知的。只有可观测的量才是存在的!

卡尔•萨根(Karl Sagan)曾经举过一个很有意思的例子,虽然不是直接关于量子

论的,但颇能说明问题。

“我的车库里有一条喷火的龙!”他这样声称。

“太稀罕了!”他的朋友连忙跑到车库中,但没有看见龙。“龙在哪里?”

“哦,”萨根说,“我忘了说明,这是一条隐身的龙。”

朋友有些狐疑,不过他建议,可以撒一些粉末在地上,看看龙的爪印是不是会出现。但是

萨根又声称,这龙是飘在空中的。

“那既然这条龙在喷火,我们用红外线检测仪做一个热扫描?”

“也不行。”萨根说,“隐形的火也没有温度。”

“要么对这条龙喷漆让它现形?”――“这条龙是非物质的,滑不溜手,油漆无处可粘。

反正没有一种物理方法可以检测到这条龙的存在。萨根最后问:“这样一条看不见摸不着

,没有实体的,飘在空中喷着没有热度的火的龙,一条任何仪器都无法探测的龙,和‘根

本没有龙’之间又有什么差别呢?”

现在,玻尔和海森堡也以这种苛刻的怀疑主义态度去对待物理量。不确定性原理说,不可

能同时测准电子的动量p和位置q,任何精密的仪器也不行。许多人或许会认为,好吧,就

算这是理论上的限制,和我们实验的笨拙无关,我们仍然可以安慰自己,说一个电子实际

上是同时具有准确的位置和动量的,只不过我们出于某种限制无法得知罢了。

但哥本哈根派开始严厉地打击这种观点:一个具有准确p和q的经典电子?这恐怕是自欺欺

人吧。有任何仪器可以探测到这样的一个电子吗?――没有,理论上也不可能有。那么,

同样道理,一个在臆想的世界中生存的,完全探测不到的电子,和根本没有这样一个电子

之间又有什么区别呢?

事实上,同时具有p和q的电子是不存在的!p和q也像波和微粒一样,在不确定原理和互补

原理的统治下以一种此长彼消的方式生存。对于一些测量手段来说,电子呈现出一个准确

的p,对于另一些测量手段来说,电子呈现出准确的q。我们能够测量到的电子才是唯一的

实在,这后面不存在一个“客观”的,或者“实际上”的电子!

换言之,不存在一个客观的,绝对的世界。唯一存在的,就是我们能够观测到的世界。物

理学的全部意义,不在于它能够揭示出自然“是什么”,而在于它能够明确,关于自然我

们能“说什么”。没有一个脱离于观测而存在的绝对自然,只有我们和那些复杂的测量关

系,熙熙攘攘纵横交错,构成了这个令人心醉的宇宙的全部。测量是新物理学的核心,测

量行为创造了整个世界。

*********

饭后闲话:奥卡姆剃刀

同时具有p和q的电子是不存在的。有人或许感到不理解,探测不到的就不是实在吗?

我们来问自己,“这个世界究竟是什么”和“我们在最大程度上能够探测到这个世界是什

么”两个命题,其实质到底有多大的不同?我们探测能力所达的那个世界,是不是就是全

部实在的世界?比如说,我们不管怎样,每次只能探测到电子是个粒子或者是个波,那么

,是不是有一个“实在”的世界,在那里电子以波-粒子的奇妙方式共存,我们每次探测

,只不过探测到了这个终极实在于我们感观中的一部分投影?同样,在这个“实在世界”

中还有同时具备p和q的电子,只不过我们与它缘悭一面,每次测量都只有半面之交,没法

窥得它的真面目?

假设宇宙在创生初期膨胀得足够快,以致它的某些区域对我们来说是如此遥远,甚至从创

生的一刹那以光速出发,至今也无法与它建立起任何沟通。宇宙年龄大概有150亿岁,任

何信号传播最远的距离也不过150亿光年,那么,在距离我们150亿光年之外,有没有另一

些“实在”的宇宙,虽然它们不可能和我们的宇宙之间有任何因果联系?

在那个实在世界里,是不是有我们看不见的喷火的龙,是不是有一匹具有“实在”颜色的

马,而我们每次观察只不过是这种“实在颜色”的肤浅表现而已。我跟你争论说,地球“

其实”是方的,只不过它在我们观察的时候,表现出圆形而已。但是在那个“实在”世界

里,它是方的,而这个实在世界我们是观察不到的,但不表明它不存在。

如果我们运用“奥卡姆剃刀原理”(Occam's Razor),这些观测不到的“实在世界”全

都是子虚乌有的,至少是无意义的。这个原理是14世纪的一个修道士威廉所创立的,奥卡

姆是他出生的地方。这位奥卡姆的威廉还有一句名言,那是他对巴伐利亚的路易四世说的

:“你用剑来保卫我,我用笔来保卫你。”

剃刀原理是说,当两种说法都能解释相同的事实时,应该相信假设少的那个。比如,地球

“本来”是方的,但观测时显现出圆形。这和地球“本来就是圆的”说明的是同一件事。

但前者引入了一个莫名其妙的不必要的假设,所以前者是胡说。同样,“电子本来有准确

的p和q,但是观测时只有1个能显示”,这和“只存在具有p或者具有q的电子”说明的也

是同一回事,但前者多了一个假设,我们应当相信后者。“存在但观测不到”,这和“不

存在”根本就是一码事。

同样道理,没有粒子-波混合的电子,没有看不见的喷火的龙,没有“绝对颜色”的马,

没有150亿光年外的宇宙(150亿光年这个距离称作“视界”),没有隔着1厘米四维尺度

观察我们的四维人,没有绝对的外部世界。史蒂芬•霍金在《时间简史》中说:“

我们仍然可以想像,对于一些超自然的生物,存在一组完全地决定事件的定律,它们能够

观测宇宙现在的状态而不必干扰它。然而,我们人类对于这样的宇宙模型并没有太大的兴

趣。看来,最好是采用奥卡姆剃刀原理,将理论中不能被观测到的所有特征都割除掉。”

你也许对这种实证主义感到反感,反驳说:“一片无人观察的荒漠,难道就不存在吗?”

以后我们会从另一个角度来讨论这片无人观察的荒漠,这里只想指出,“无人的荒漠”并

不是原则上不可观察的。

正如我们的史话在前面一再提醒各位的那样,量子论革命的破坏力是相当惊人的。在概率

解释,不确定性原理和互补原理这三大核心原理中,前两者摧毁了经典世界的因果性,互

补原理和不确定原理又合力捣毁了世界的客观性和实在性。新的量子图景展现出一个前所

未有的世界,它是如此奇特,难以想象,和人们的日常生活格格不入,甚至违背我们的理

性本身。但是,它却能够解释量子世界一切不可思议的现象。这种主流解释被称为量子论

的“哥本哈根”解释,它是以玻尔为首的一帮科学家作出的,他们大多数曾在哥本哈根工

作过,许多是量子论本身的创立者。哥本哈根派的人物除了玻尔,自然还有海森堡、波恩

、泡利、狄拉克、克莱默、约尔当,也包括后来的魏扎克和盖莫夫等等,这个解释一直被

当作是量子论的正统,被写进各种教科书中。

当然,因为它太过奇特,太教常人困惑,近80年来没有一天它不受到来自各方面的置疑、

指责、攻击。也有一些别的解释被纷纷提出,这里面包括德布罗意-玻姆的隐函数理论,

埃弗莱特的多重宇宙解释,约翰泰勒的系综解释、Ghirardi-Rimini-Weber的“自发定域

”(Spontaneous Localization),Griffiths-Omnès-GellMann-Hartle的“脱散历史态

”(Decoherent Histories, or Consistent Histories),等等,等等。我们的史话以

后会逐一地去看看这些理论,但是公平地说,至今没有一个理论能取代哥本哈根解释的地

位,也没有人能证明哥本哈根解释实际上“错了”(当然,可能有人争辩说它“不完备”

)。隐函数理论曾被认为相当有希望,可惜它的胜利直到今天还仍然停留在口头上。因此

,我们的史话仍将以哥本哈根解释为主线来叙述,对于读者来说,他当然可以自行判断,

并得出他自己的独特看法。

哥本哈根解释的基本内容,全都围绕着三大核心原理而展开。我们在前面已经说到,首先

,不确定性原理限制了我们对微观事物认识的极限,而这个极限也就是具有物理意义的一

切。其次,因为存在着观测者对于被观测物的不可避免的扰动,现在主体和客体世界必须

被理解成一个不可分割的整体。没有一个孤立地存在于客观世界的“事物”(being),

事实上一个纯粹的客观世界是没有的,任何事物都只有结合一个特定的观测手段,才谈得

上具体意义。对象所表现出的形态,很大程度上取决于我们的观察方法。对同一个对象来

说,这些表现形态可能是互相排斥的,但必须被同时用于这个对象的描述中,也就是互补

原理。

最后,因为我们的观测给事物带来各种原则上不可预测的扰动,量子世界的本质是“随机

性”。传统观念中的严格因果关系在量子世界是不存在的,必须以一种统计性的解释来取

而代之,波函数ψ就是一种统计,它的平方代表了粒子在某处出现的概率。当我们说“电

子出现在x处”时,我们并不知道这个事件的“原因”是什么,它是一个完全随机的过程

,没有因果关系。

有些人可能觉得非常糟糕:又是不确定又是没有因果关系,这个世界不是乱套了吗?物理

学家既然什么都不知道,那他们还好意思呆在大学里领薪水,或者在电视节目上欺世盗名

?然而事情并没有想象的那么坏,虽然我们对单个电子的行为只能预测其概率,但我们都

知道,当样本数量变得非常非常大时,概率论就很有用了。我们没法知道一个电子在屏幕

上出现在什么位置,但我们很有把握,当数以万亿记的电子穿过双缝,它们会形成干涉图

案。这就好比保险公司没法预测一个客户会在什么时候死去,但它对一个城市的总体死亡

率是清楚的,所以保险公司一定是赚钱的!

传统的电视或者电脑屏幕,它后面都有一把电子枪,不断地逐行把电子打到屏幕上形成画

面。对于单个电子来说,我并不知道它将出现在屏幕上的哪个点,只有概率而已。不过大

量电子叠在一起,组成稳定的画面是确定无疑的。看,就算本质是随机性,但科学家仍然

能够造出一些有用的东西。如果你家电视画面老是有雪花,不要怀疑到量子论头上来,先

去检查一下天线。

当然时代在进步,俺的电脑屏幕现在变成了薄薄的液晶型,那是另一回事了。

至于令人迷惑的波粒二象性,那也只是量子微观世界的奇特性质罢了。我们已经谈到德布

罗意方程λ= h/p,改写一下就是λp=h,波长和动量的乘积等于普朗克常数h。对于微观

粒子来说,它的动量非常小,所以相应的波长便不能忽略。但对于日常事物来说,它们质

量之大相比h简直是个天文数字,所以对于生活中的一个足球,它所伴随的德布罗意波微

乎其微,根本感觉不到。我们一点都用不着担心,在世界杯决赛中,眼看要入门的那个球

会突然化为一缕波,消失得杳然无踪。

但是,我们还是觉得不太满意,因为对“观测行为”,我们似乎还没有作出合理的解释。

一个电子以奇特的分身术穿过双缝,它的波函数自身与自身发生了干涉,在空间中严格地

,确定地发展。在这个阶段,因为没有进行观测,说电子在什么地方是没有什么意义的,

只有它的概率在空间中展开。物理学家们常常摆弄玄虚说:“电子无处不在,而又无处在

”,指的就是这个意思。然而在那以后,当我们把一块感光屏放在它面前以测量它的位置

的时候,事情突然发生了变化!电子突然按照波函数的概率分布而随机地作出了一个选择

,并以一个小点的形式出现在了某处。这时候,电子确定地存在于某点,自然这个点的概

率变成了100%,而别的地方的概率都变成了0。也就是说,它的波函数突然从空间中收缩

,聚集到了这一个点上面,在这个点出现了强度为1的高峰。而其他地方的波函数都瞬间

降为0。

哦,上帝,发生了什么事?为什么电子的波函数在一刹那发生了这样的巨变?原本形态优

美,严格地符合薛定谔方程的波函数在一刹那轰然崩溃,变成了一个针尖般的小点。从数

学上来说,这两种状态显然是没法互相推导的。在我们观测电子以前,它实际上处在一种

叠加态,所有关于位置的可能性叠合在一起,弥漫到整个空间中去。但是,当我们真的去

“看”它的时候,电子便无法保持它这样优雅而面面俱到的行为方式了,它被迫作出选择

,在无数种可能性中挑选一种,以一个确定的位置出现在我们面前。

波函数这种奇迹般的变化,在哥本哈根派的口中被称之为“坍缩”(collapse),每当我

们试图测量电子的位置,它那原本按照薛定谔方程演变的波函数ψ便立刻按照那个时候的

概率分布坍缩(我们记得ψ的平方就是概率),所有的可能全都在瞬间集中到某一点上。

而一个实实在在的电子便大摇大摆地出现在那里,供我们观赏。

在电子通过双缝前,假如我们不去测量它的位置,那么它的波函数就按照方程发散开去,

同时通过两个缝而自我互相干涉。但要是我们试图在两条缝上装个仪器以探测它究竟通过

了哪条缝,在那一刹那,电子的波函数便坍缩了,电子随机地选择了一个缝通过。而坍缩

过的波函数自然就无法再进行干涉,于是乎,干涉条纹一去不复返。

奇怪,非常奇怪。为什么我们一观测,电子的波函数就开始坍缩了呢?

事实似乎是这样的,当我们闭上眼睛不去看这个电子,它就不是一个实实在在的电子。它

像一个幽灵一般按照波函数向四周散发开去,虚无飘渺,没有实体,而以概率波的形态漂

浮在空间中。随着时间的演化,这种概率波严格地按照薛定谔波动方程的指使,听话而确

定地按照经典方式发展。这个时候,与其说它是一个电子,不如说它是一个鬼魂,一团混

沌,一幅浸润开来的水彩画,一朵概率云,爱丽丝梦境中那难以捉摸的柴郡猫的笑容。不

管你怎么形容都好,反正它不是一个实体,它以概率的方式扩散开来,这种概率似波动一

般起伏,可以干涉和叠加,为ψ所精确描述。

但是,当你一睁开眼睛,奇妙的事情发生了!所有的幻影,所有的幽灵都消失了。电子那

散发开去的波函数在瞬间坍缩,它重新变成了一个实实在在的粒子,随机地出现在某处。

除了这个地方之外,一切的概率波,一切的可能性都消失了。化为一缕清风的妖怪重新凝

聚成为一个白骨精,被牢牢地摁死在一个地方。电子回到了现实世界里来,又成了大家所

熟悉的经典粒子。

你又闭上眼睛,刚刚变回原型的电子又化为概率波,向四周扩散。再睁开眼睛,它又变回

粒子出现在某个地方。你测量一次,它的波函数就坍缩一次,随机地决定一个新的位置。

当然,这里的随机是严格按照波函数所严格描述的概率分布来决定的。

我们不如叙述得更加生动活泼一些。金庸在《笑傲江湖》第二十六回里描述了令狐冲在武

当脚下与冲虚一战,冲虚一柄长剑幻为一个个光圈,让令狐冲眼花缭乱,看不出剑尖所在

。用量子语言说,这时候冲虚的剑已经不是一个实体,它变成许许多多的“虚剑”,在光

圈里分布开来,每一个“虚剑尖”都代表一种可能性,它可能就是“实剑尖”所在。冲虚

的剑可以为一个波函数所描述,很有可能在光圈的中心,这个波函数的强度最大,也就是

说这剑最可能出现在光圈中心。现在令狐冲挥剑直入,注意,这是一次“测量行为”!好

,在那瞬间冲虚剑的波函数坍缩了,又变成一柄实剑。令狐冲运气好,它真的出现在光圈

中间,于是破了此招。要是猜错了呢?那免不了断送一条手臂,但冲虚剑的波函数总是坍

缩了,它无论如何要实实在在地出现在某处,这才能伤敌。

在《三国演义》评话里,有一个类似的情节。赵云在长坂坡遇上高览(有些说是张绣),

后者使一招百鸟朝凤,枪尖幻化为千百点,赵云侥幸破了此招――他随便一挡,迫使其波

函数坍缩,结果正好坍缩到两枪相遇的位置,然后高览心慌意乱,反死于赵云之蛇盘七探

枪下,这就不多说了。

我们还是回到物理上来。这种哥本哈根解释听起来未免也太奇怪了,我们观测一下,电子

才变成实在,不然就是个幽灵。许多人一定觉得不可思议:当我们背过身,或者闭着眼的

时候,电子一定在某个地方,只不过我们不知道而已。但正如我们指出的,假使电子真的

“在”某个地方,它便只能通过一道狭缝,这就难以解释干涉条纹。而且我们以后也会看

到,实验完全排除了这种可能。也许我们说“幽灵”太耸人听闻,严格地说,电子在没有

观测的时候什么也不是,谈论它是无意义的,只有数学可以描述――波函数!按照哥本哈

根解释,不观测的时候,根本没有个实在!自然也就没有实在的电子。事实上,不存在“

电子”这个东西,只存在“我们与电子之间的观测关系”。

我已经可以预见到即将扔过来的臭鸡蛋的数量――不过它现在还是个波函数,等一会儿才

会坍缩,哈哈――然而在那些扔臭鸡蛋的人中,有几位是让我感到十分荣幸的。事实上,

哥本哈根派这下遇到真正的麻烦了,他们要面对一些强大的怀疑论者,这些人中间不少还

刚刚和他们并肩战斗过。二十世纪物理史上最激烈,影响最大,意义最深远的一场争论马

上就要展开,这使得我们能够对自然的行为和精神有更加深刻的理解。下一章我们就来谈

这场伟大的辩论――玻尔-爱因斯坦之争。

家园 爱因斯坦就要出手?
家园 量子力学――量,子力,而学!

俺虽说是学医的,但是大学刚入门的时候也要学上三天半的物理。虽说学的不多,每次上课教物理的老家伙总要把这句话说个几遍。说是在的俺是“力”不够的那种,到最后也没有弄明白,所以一直关注介兰油大哥的好文,要加油啊,俺支持你到最后!

家园 【史话】决战紫禁之巅之爱玻之战(8-1)(8-2)

第八章 论战

意大利北部的科莫市(Como)是一个美丽的小城,北临风景胜地科莫湖,与米兰相去不远

。它市中心那几座著名的教堂洋溢着哥特式风格以及文艺复兴时代的气息,折射出这个国

家那悠远的历史和文化沉淀。这个小城也有一支足球队――科莫队,在上个赛季(2002-

2003)还打入了甲级联赛,可惜现在又降级了。一度报道说,它对中国球员吴承瑛有兴趣

,想来对球迷不算陌生。

不过,科莫市最著名的人物,当然还是1745年出生于此的大科学家,亚里山德罗•

伏打(Alessandro Volta)。他在电学方面的成就如此伟大,以致人们用他的名字来作为

电压的单位:伏特(volt)。伏打于1827年9月去世,被他的家乡视为永远的光荣和骄傲

。他出世的地方被命名为伏打广场,他的雕像自1839年起耸立于此。他的名字被用来命名

教堂和科莫湖畔的灯塔,他的光辉照耀这个城镇,给它带来世界性的声名。

斗转星移,眨眼间已是1927,科学巨人已离开我们整整100周年。一向安静宁谧的科莫忽

然又热闹起来,新时代的科学大师们又聚集于此,在纪念先人的同时探讨物理学的最新进

展。科莫会议邀请了当时几乎所有的最杰出的物理学家,洵为盛会。赴会者包括玻尔、海

森堡、普朗克、泡利、波恩、洛伦兹、德布罗意、费米、克莱默、劳厄、康普顿、魏格纳

、索末菲、德拜、冯诺依曼(当然严格说来此人是数学家)……遗憾的是,爱因斯坦和薛

定谔都别有要务,未能出席。这两位哥本哈根派主要敌手的缺席使得论战的火花向后推迟

了几个月。同样没能赶到科莫的还有狄拉克和玻色。其中玻色的case颇为离奇:大会本来

是邀请了他的,但是邀请信发给了“加尔各答大学物理系的玻色教授”。显然这封信是寄

给著名的S.N.玻色,也就是发现了玻色-爱因斯坦统计的那个玻色,他和爱因斯坦还预测

了有名的玻色-爱因斯坦凝聚现象。2001年,3位分别来自美国和德国的科学家因为以实验

证实了这一现象而获得诺贝尔物理学奖。

不过在1927年,玻色早就离开了加尔各答去了达卡大学。但无巧不成书,加尔各答还有一

个D.M.玻色。阴差阳错之下,这个名不见经传的“玻色”就参加了众星云集的科莫会议,

也算是饭后的一大谈资吧。

在准备科莫会议讲稿的过程中,互补原理的思想进一步在玻尔脑中成型。他决定在这个会

议上把这一大胆的思想披露出来。在准备讲稿的同时,他还给Nature杂志写短文以介绍这

个发现,事情太多而时间仓促,最后搞得他手忙脚乱。在出发前的一刹那,他竟然找不到

他的护照――这耽误了几个小时的火车。

但是,不管怎么样,玻尔最后还是完成那长达8页的讲稿,并在大会上成功地作了发言。

这个演讲名为《量子公设和原子论的最近发展》,在其中玻尔第一次描述了波-粒的二象

性,用互补原理详尽地阐明我们对待原子尺度世界的态度。他强调了观测的重要性,声称

完全独立和绝对的测量是不存在的。当然互补原理本身在这个时候还没有完全定型,一直

要到后来的索尔维会议它才算最终完成,不过这一思想现在已经引起了人们的注意。

波恩赞扬了玻尔“中肯”的观点,同时又强调了量子论的不确定性。他特别举了波函数“

坍缩”的例子,来说明这一点。这种“坍缩”显然引起了冯诺伊曼的兴趣,他以后会证明

关于它的一些有趣的性质。海森堡和克莱默等人也都作了评论。

当然我们也要指出的是,许多不属于“哥本哈根派”的人物,对玻尔等人的想法和工作一

点都不熟悉,这种互补原理对他们来说令人迷惑不解。许多人都以为这不过是一种文字游

戏,是对大家都了解的情况“换一种说法”罢了。正如罗森菲尔德(Rosenfeld)后来在

访谈节目中评论的:“这个互补原理只是对各人所清楚的情况的一种说明……科莫会议并

没有明确论据,关于概念的定义要到后来才作出。”尤金•魏格纳(Eugene

Wigner)总结道:“……(大家都觉得,玻尔的演讲)没能改变任何人关于量子论的理解

方式。”

但科莫会议的历史作用仍然不容低估,互补原理第一次公开亮相,标志着哥本哈根解释迈

出了关键的一步。不久出版了玻尔的讲稿,内容已经有所改进,距离这个解释的最终成熟

只差最后一步了。

在哥本哈根派聚集力量的同时,他们的反对派也开始为最后的决战做好准备。对于爱因斯

坦来说,一个没有严格因果律的物理世界是不可想象的。物理规律应该统治一切,物理学

应该简单明确:A导致了B,B导致了C,C导致了D。每一个事件都有来龙去脉,原因结果,

而不依赖于什么“随机性”。至于抛弃客观实在,更是不可思议的事情。这些思想从他当

年对待玻尔的电子跃迁的看法中,已经初露端倪。1924年他在写给波恩的信中坚称:“我

决不愿意被迫放弃严格的因果性,并将对其进行强有力的辩护。我觉得完全不能容忍这样

的想法,即认为电子受到辐射的照射,不仅它的跃迁时刻,而且它的跃迁方向,都由它自

己的‘自由意志’来选择。”

旧量子论已经让爱因斯坦无法认同,那么更加“疯狂”的新量子论就更使他忍无可忍了。

虽然爱因斯坦本人曾经提出了光量子假设,在量子论的发展历程中作出过不可磨灭的贡献

,但现在他却完全转向了这个新生理论的对立面。爱因斯坦坚信,量子论的基础大有毛病

,从中必能挑出点刺来,迫使人们回到一个严格的,富有因果性的理论中来。玻尔后来回

忆说:“爱因斯坦最善于不抛弃连续性和因果性来标示表面上矛盾着的经验,他比别人更

不愿意放弃这些概念。”

两大巨头未能在科莫会议上碰面,然而低头不见抬头见,命运已经在冥冥中安排好了这样

的相遇不可避免。仅仅一个多月后,另一个历史性的时刻就到来了,第五届索尔维会议在

比利时布鲁塞尔召开。这一次,各路冤家对头终于聚首一堂,就量子论的问题作一个大决

战。从黄金年代走来的老人,在革命浪潮中成长起来的反叛青年,经典体系的庄严守护者

,新时代的冒险家,这次终于都要作一个最终了断。世纪大辩论的序幕即将拉开,像一场

熊熊的大火燃烧不已,而量子论也将在这大火中接受最严苛的洗礼,锻烧出更加璀璨的光

芒来。

布鲁塞尔见。

*********

饭后闲话:海森堡和德国原子弹计划(一)

如果说玻尔-爱因斯坦之争是二十世纪科学史上最有名的辩论,那么海森堡在二战中的角

色恐怕就是二十世纪科学史上最大的谜题。不知多少历史学家为此费尽口水,牵涉到数不

清的跨国界的争论。甚至到现在,还有人不断地提出异议。我打算在这一章的饭后闲话里

专门地来谈一谈这个话题,这件事说来话长,可能要用掉一整章,我们还是废话少说,这

就开始吧。

纳粹德国为什么没能造出原子弹?战后几乎人人都在问这个问题。是政策上的原因?理论

上的原因?技术上的原因?资源上的原因?或是道德上的原因?不错,美国造出了原子弹

,他们有奥本海默,有费米,有劳伦斯、贝特、西伯格、魏格纳、查德威克、佩尔斯、弗

里西、塞格雷,后来又有了玻尔,以致像费因曼这样的小字辈根本就不起眼,而洛斯阿拉

莫斯也被称作“诺贝尔得奖者的集中营”。但德国一点也不差。是的,希特勒的犹太政策

赶走了国内几乎一半的精英,纳粹上台的第一年,就有大约2600名学者离开了德国,四分

之一的物理学家从德国的大学辞职而去,到战争前夕已经有40%的大学教授失去了职位。

是的,整个轴心国流失了多达27名诺贝尔获奖者,其中甚至包括爱因斯坦、薛定谔、费米

、波恩、泡利、德拜这样最杰出的人物,这个数字还不算间接损失的如玻尔之类。但德国

凭其惊人的实力仍保有对抗全世界的能力。

战争甫一爆发,德国就展开了原子弹的研究计划。那时是1939年,全世界只有德国一家在

进行这样一个原子能的军事应用项目。德国占领着世界上最大的铀矿(在捷克斯洛伐克)

,德国有世界上最强大的化学工业,他们仍然拥有世界上最好的科学家,原子的裂变现象

就是两个德国人――奥托•哈恩(Otto Hahn)和弗里兹•斯特拉斯曼(Fritz

Strassmann)在前一年发现的,这两人都还在德国,哈恩以后会因此发现获得诺贝尔化学

奖。当然不止这两人,德国还有劳厄(1914年诺贝尔物理)、波特(Bothe,1954诺贝尔

物理)、盖革(盖革计数器的发明者,他进行了α散射实验)、魏扎克(Karl von

Weizsacker)、巴格(Erich Bagge)、迪布纳(Kurt Diebner)、格拉赫(Walther

Gerlach)、沃兹(Karl Wirtz)……当然,他们还有定海神针海森堡,这位20世纪最伟

大的物理学家之一。所有的这些科学家都参与了希特勒的原子弹计划,成为“铀俱乐部”

的成员之一,海森堡是这个计划的总负责人。

然而,德国并没能造出原子弹,它甚至连门都没有入。从1942年起,德国似乎已经放弃整

个原子弹计划,而改为研究制造一个能提供能源的原子核反应堆。主要原因是因为1942年

6月,海森堡向军备部长斯佩尔(Albert Speer)报告说,铀计划因为技术原因在短时间

内难以产出任何实际的结果,在战争期间造出原子弹是不大可能的。但他同时也使斯佩尔

相信,德国的研究仍处在领先的地位。斯佩尔将这一情况报告希特勒,当时由于整个战场

情况的紧迫,德国的研究计划被迫采取一种急功近利的方略,也就是不能在短时间,确切

地说是六周内见效的计划都被暂时放在一边。希特勒和斯佩尔达成一致意见:对原子弹不

必花太大力气,不过既然在这方面仍然“领先”,也不妨继续拨款研究下去。当时海森堡

申请附加的预算只有寥寥35万帝国马克,有它无它都影响不大。

这个计划在被高层放任了近2年后,终于到1944年又为希姆莱所注意到。他下令大力拨款

,推动原子弹计划的前进,并建了几个新的铀工厂。计划确实有所进展,不过到了那时,

全德国的工业早已被盟军的轰炸破坏得体无完肤,难以进一步支撑下去。而且为时也未免

太晚,不久德国就投降了。

1942年的报告是怎么一回事?海森堡在其中扮演了一个什么样的角色?这答案扑朔迷离,

历史学家们各执一词,要不是新证据的逐一披露,恐怕人们至今仍然在云里雾中。这就是

科学史上有名的“海森堡之谜”。

索尔维会议是由一位比利时的实业家Ernest Solvay创立的,并以他的名字命名。第一届

索尔维会议于1911年在布鲁塞尔召开,后来虽然一度被第一次世界大战所打断,但从1921

年开始又重新恢复,定期3年举行一届。到了1927年,这已经是第五届索尔维会议了,也

许,这也将是最著名的一次索尔维会议。

这次会议弥补了科莫的遗憾,爱因斯坦,薛定谔等人都如约而至。目前流传得最广的那张

“物理学全明星梦之队”的照片,就是这次会议的合影。当然世事无完美,硬要挑点缺陷

,那就是索末菲和约尔当不在其中,不过我们要求不能太高了,人生不如意者还是十有八

九的。

这次会议从10月24日到29日,为期6天。主题是“电子和光子”(我们还记得,“光子-ph

oton”是个新名词,它刚刚在1926年由美国人刘易斯所提出),会议议程如下:首先劳伦

斯•布拉格作关于X射线的实验报告,然后康普顿报告康普顿实验以及其和经典电磁

理论的不一致。接下来,德布罗意作量子新力学的演讲,主要是关于粒子的德布罗意波。

随后波恩和海森堡介绍量子力学的矩阵理论,而薛定谔介绍波动力学。最后,玻尔在科莫

演讲的基础上再次做那个关于量子公设和原子新理论的报告,进一步总结互补原理,给量

子论打下整个哲学基础。这个议程本身简直就是量子论的一部微缩史,从中可以明显地分

成三派:只关心实验结果的实验派:布拉格和康普顿;哥本哈根派:玻尔、波恩和海森堡

;还有哥本哈根派的死敌:德布罗意,薛定谔,以及坐在台下的爱因斯坦。

会议的气氛从一开始便是火热的,像拳王争霸赛一样,重头戏到来之前先有一系列的垫赛

:大家先就康普顿的实验做了探讨,然后各人分成了泾渭分明的阵营,互相炮轰。德布罗

意一马当先做了发言,他试图把粒子融合到波的图像里去,提出了一种“导波”(pivot

wave)的理论,认为粒子是波动方程的一个奇点,它必须受波的控制和引导。泡利站起来

狠狠地批评这个理论,他首先不能容忍历史车轮倒转,回到一种传统图像中,然后他引了

一系列实验结果来反驳德布罗意。众所周知,泡利是世界第一狙击手,谁要是被他盯上了

多半是没有好下场的,德布罗意最后不得不公开声明放弃他的观点。幸好薛定谔大举来援

,不过他还是坚持一个非常传统的解释,这连盟军德布罗意也觉得不大满意,泡利早就嘲

笑薛定谔为“幼稚”。波恩和海森堡躲在哥本哈根掩体后面对其开火,他们在报告最后说

:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步

修改的。”他们也集中火力猛烈攻击了薛定谔的“电子云”,后者认为电子的确在空间中

实际地如波般扩散开去。海森堡评论说:“我从薛定谔的计算中看不到任何东西可以证明

事实如同他所希望的那样。”薛定谔承认他的计算确实还不太令人满意,不过他依然坚持

,谈论电子的轨道是“胡扯”(应该是波本征态的叠加),波恩回敬道:“不,一点都不

是胡扯。”在一片硝烟中,会议的组织者,老资格的洛伦兹也发表了一些保守的观点,an

d so on and so on……

爱因斯坦一开始按兵不动,保持着可怕的沉默,不过当波恩提到他的名字后,他终于忍不

住出击了。他提出了一个模型:一个电子通过一个小孔得到衍射图像。爱因斯坦指出,目

前存在着两种观点,第一是说这里没有“一个电子”,只有“一团电子云”,它是一个空

间中的实在,为德布罗意-薛定谔波所描述。第二是说的确有一个电子,而ψ是它的“几

率分布”,电子本身不扩散到空中,而是它的几率波。爱因斯坦承认,观点II是比观点I

更加完备的,因为它整个包含了观点I。尽管如此,爱因斯坦仍然说,他不得不反对观点I

I。因为这种随机性表明,同一个过程会产生许多不同的结果,而且这样一来,感应屏上

的许多区域就要同时对电子的观测作出反应,这似乎暗示了一种超距作用,从而违背相对

论。

风云变幻,龙虎交济,现在两大阵营的幕后主将终于都走到台前,开始进行一场决定命运

的单挑。可惜的是,玻尔等人的原始讨论记录没有官方资料保存下来,对当时情景的重建

主要依靠几位当事人的回忆。这其中有玻尔本人1949年为庆祝爱因斯坦70岁生日而应邀撰

写的《就原子物理学中的认识论问题与爱因斯坦进行的商榷》长文,有海森堡、德布罗意

和埃仑菲斯特的回忆和信件等等。当时那一场激战,讨论的问题中有我们已经描述过的那

个电子在双缝前的困境:如何选择它的路径以及快速地关闭/打开一条狭缝对电子产生的

影响。还有许许多多别的思维实验。埃仑费斯特在写给他那些留守在莱登的弟子们(乌仑

贝特和古德施密特等)的信中描述说:爱因斯坦像一个弹簧玩偶,每天早上都带着新的主

意从盒子里弹出来,而玻尔则从云雾缭绕的哲学中找到工具,把对方所有的论据都一一碾

碎。

海森堡1967年的回忆则说:

“讨论很快就变成了一场爱因斯坦和玻尔之间的决斗:当时的原子理论在多大程度上可以

看成是讨论了几十年的那些困难的最终答案呢?我们一般在旅馆用早餐时就见面了,于是

爱因斯坦就描绘一个思维实验,他认为从中可以清楚地看出哥本哈根解释的内部矛盾。然

后爱因斯坦,玻尔和我便一起走去会场,我就可以现场聆听这两个哲学态度迥异的人的讨

论,我自己也常常在数学表达结构方面插几句话。在会议中间,尤其是会间休息的时候,

我们这些年轻人――大多数是我和泡利――就试着分析爱因斯坦的实验,而在吃午饭的时

候讨论又在玻尔和别的来自哥本哈根的人之间进行。一般来说玻尔在傍晚的时候就对这些

理想实验完全心中有数了,他会在晚餐时把它们分析给爱因斯坦听。爱因斯坦对这些分析

提不出反驳,但在心里他是不服气的。”

爱因斯坦当然是不服气的,他如此虔诚地信仰因果律,以致决不能相信哥本哈根那种愤世

嫉俗的概率解释。玻尔回忆说,爱因斯坦有一次嘲弄般地问他,难道他真的相信上帝的力

量要依靠掷骰子(ob der liebe Gott würfelt)?

上帝不掷骰子!这已经不是爱因斯坦第一次说这话了。早在1926年写给波恩的信里,他就

说:“量子力学令人印象深刻,但是一种内在的声音告诉我它并不是真实的。这个理论产

生了许多好的结果,可它并没有使我们更接近‘老头子’的奥秘。我毫无保留地相信,‘

老头子’是不掷骰子的。”

“老头子”是爱因斯坦对上帝的昵称。

然而,1927年这场华山论剑,爱因斯坦终究输了一招。并非剑术不精,实乃内力不足。面

对浩浩荡荡的历史潮流,他顽强地逆流而上,结果被冲刷得站立不稳,苦苦支撑。1927年

,量子革命的大爆发已经进入第三年,到了一个收官的阶段。当年种下的种子如今开花结

果,革命的思潮已经席卷整个物理界,毫无保留地指明了未来的方向。越来越多的人终究

领悟到了哥本哈根解释的核心奥义,并诚心皈依,都投在量子门下。爱因斯坦非但没能说

服玻尔,反而常常被反驳得说不出话来,而且他这个“反动”态度引得了许多人扼腕叹息

。遥想当年,1905,爱因斯坦横空出世,一年之内六次出手,每一役都打得天摇地动,惊

世骇俗,独自创下了一番轰轰烈烈的事业。当时少年意气,睥睨群雄,扬鞭策马,笑傲江

湖,这一幅传奇画面在多少人心目中留下了永恒的神往!可是,当年那个最反叛,最革命

,最不拘礼法,最蔑视权威的爱因斯坦,如今竟然站在新生量子论的对立面!

波恩哀叹说:“我们失去了我们的领袖。”

埃伦费斯特气得对爱因斯坦说:“爱因斯坦,我为你感到脸红!你把自己放到了和那些徒

劳地想推翻相对论的人一样的位置上了。”

爱因斯坦这一仗输得狼狈,玻尔看上去沉默驽钝,可是重剑无锋,大巧不工,在他一生中

几乎没有输过哪一场认真的辩论。哥本哈根派和它对量子论的解释大获全胜,海森堡在写

给家里的信中说:“我对结果感到非常满意,玻尔和我的观点被广泛接受了,至少没人提

得出严格的反驳,即使爱因斯坦和薛定谔也不行。”多年后他又总结道:“刚开始(持有

这种观点的)主要是玻尔,泡利和我,大概也只有我们三个,不过它很快就扩散开去了。

但是爱因斯坦不是那种容易被打败的人,他逆风而立,一头乱发掩不住眼中的坚决。他身

后还站着两位,一个是德布罗意,一个是薛定谔。三人吴带凌风,衣袂飘飘,在量子时代

到来的曙光中,大有长铗寒瑟,易水萧萧,誓与经典理论共存亡的悲壮气慨。

时光荏苒,一弹指又是三年,各方俊杰又重聚布鲁塞尔,会面于第六届索尔维会议。三年

前那一战已成往事,这第二次华山论剑,又不知谁胜谁负?

*********

饭后闲话:海森堡和德国原子弹计划(二)

1944年,盟军在诺曼底登陆,形成两面夹攻之势。到1945年4月,纳粹德国大势已去,欧

洲战场战斗的结束已经近在眼前。摆在美国人面前的任务现在是尽可能地搜罗德国残存的

科学家和设备仪器,不让他们落到别的国家手里(苏联不用说,法国也不行)。和苏联人

比赛看谁先攻占柏林是无望的了,他们转向南方,并很快俘获了德国铀计划的科学家们,

缴获了大部分资料和设备。不过那时候海森堡已经提前离开逃回厄菲尔德(Urfeld)的家

中,这个地方当时还在德国人手里,但为了得到海森堡这个“第一目标”,盟军派出一支

小分队,于5月3日,也就是希特勒夫妇自杀后的第四天,到海森堡家中抓住了他。这位科

学家倒是表现得颇有风度,他礼貌地介绍自己的妻子和孩子们,并问那些美国大兵,他们

觉得德国的风景如何。到了5月7日,德国便投降了。

10位德国最有名的科学家被秘密送往英国,关在剑桥附近的一幢称为“农园堂”(Farm

Hall)的房子里。他们并不知道这房子里面装满了窃听器,他们在此的谈话全部被录了音

并记录下来,我们在后面会谈到这些关键性的记录。8月6日晚上,广岛原子弹爆炸的消息

传来,这让每一个人都惊得目瞪口呆。关于当时的详细情景,我们也会在以后讲到。

战争结束后,这些科学家都被释放了。但现在不管是专家还是公众,都对德国为什么没能

造出原子弹大感兴趣。以德国科学家那一贯的骄傲,承认自己技不如人是绝对无法接受的

。还在监禁期间,广岛之后的第三天,海森堡等人便起草了一份备忘录,声称:1.原子裂

变现象是德国人哈恩和斯特拉斯曼在1938年发现的。2.只有到战争爆发后,德国才成立了

相关的研究小组。但是从当时的德国来看并无可能造出一颗原子弹,因为即使技术上存在

着可能性,仍然有资源不足的问题,特别是需要更多的重水。

返回德国后,海森堡又起草了一份更详细的声明。大致是说,德国小组早就意识到铀235

可以作为反应堆或者炸弹来使用,但是从天然铀中分离出稀少的同位素铀235却是一件极

为困难的事情。(*这里补充一下原子弹的常识:当一个中子轰击容易分裂的铀235原子核

时,会使它裂成两半,同时放出更多的中子去进一步轰击别的原子核。这样就引起一连串

的连锁反应,在每次分裂时都放出大量能量,便是通常说的“链式反应”。但只有铀235

是不稳定而容易裂变的,它的同位素铀238则不是,所以必须提高铀235的浓度才能引发可

持续的反应,不然中子就都被铀238吸收了。但天然铀中铀238占了99%以上,所以要把那

一点铀235分离出来,这在当时的技术来说是极困难的。)

海森堡说,分离出足够的铀235需要大量的资源和人力物力,这项工作在战争期间是难以

完成的。德国科学家也意识到了另一种可能的方法,那就是说,虽然铀238本身不能分裂

,但它吸收中子后会衰变成另一种元素――钚。而这种元素和铀235一样,是可以形成链

式反应的。不过无论如何,前提是要有一个原子反应堆,制造原子的反应堆需要中子减速

剂。一种很好的减速剂是重水,但对德国来说,唯一的重水来源是在挪威的一个工厂,这

个工厂被盟军的特遣队多次破坏,不堪使用。

总而言之,海森堡的潜台词是,德国科学家和盟国科学家在理论和技术上的优势是相同的

。但是因为德国缺乏相应的资源,因此德国人放弃了这一计划。他声称一直到1942年以前

,双方的进展还“基本相同”,只不过由于外部因素的影响,德国认为在战争期间没有条

件(而不是没有理论能力)造出原子弹,因此转为反应堆能源的研究。

海森堡声称,德国的科学家一开始就意识到了原子弹所引发的道德问题,这样一种如此大

杀伤力的武器使他们也意识到对人类所负有的责任。但是对国家(不是纳粹)的义务又使

得他们不得不投入到工作中去。不过他们心怀矛盾,消极怠工,并有意无意地夸大了制造

的难度,因此在1942年使得高层相信原子弹并没有实际意义。再加上外部环境的恶化使得

实际制造成为不可能,这让德国科学家松了一口气,因为他们不必像悲剧中的安提戈涅,

亲自来作出这个道德上两难的决定了。

这样一来,德国人的科学优势得以保持,同时又捍卫了一种道德地位。两全其美。

这种说法惹火了古德施密特,他战时是曼哈顿计划的重要领导人,本来也是海森堡的好朋

友。他认为说德国人和盟国一样地清楚原子弹的技术原理和关键参数是胡说八道。1942年

海森堡报告说难以短期制造出原子弹,那是因为德国人算错了参数,他们真的相信不可能

造出它,而不是什么虚与委蛇,更没有什么消极。古德施密特地位特殊,手里掌握着许多

资料,包括德国自己的秘密报告,他很快写出一本书叫做ALSOS,主要是介绍曼哈顿计划

的过程,但同时也汇报德国方面的情况。海森堡怎肯苟同,两人在Nature杂志和报纸上公

开辩论,断断续续地打了好多年笔仗,最后私下讲和,不了了之。

双方各有支持者。《纽约时报》的通讯记者Kaempffert为海森堡辩护,说了一句引起轩然

大波的话:“说谎者得不了诺贝尔奖!”言下之意自然是说古德施密特说谎。这滋味对于

后者肯定不好受,大家知道古德施密特是电子自旋的发现者之一,以如此伟大发现而终究

未获诺贝尔奖,很多人是鸣不平的。ALSOS的出版人舒曼(Schuman)当真写信给爱因斯坦

,问“诺贝尔得奖者真的不说谎?”爱因斯坦只好回信说:“说谎是得不了诺贝尔的,但

也不能排除有些幸运者会在压力下在特定的场合可能说谎。”

爱因斯坦大概想起了勒纳德和斯塔克,两位货真价实的诺贝尔得主,为了狂热的纳粹信仰

而疯狂攻击他和相对论,这情景犹然在眼前呢。

家园 感谢,感谢。
全看树展主题 · 分页首页 上页
/ 3
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河