西西河

主题:【合作】玉米种子 PH4CV专利翻译合作 -- 急风劲草

共:💬42 🌺134 🌵1
分页树展主题 · 全看首页 上页
/ 3
下页 末页
  • 家园 【合作】玉米种子 PH4CV专利翻译合作

    有感于厚积薄发兄的认真, 我也认为理解翻译此专利应该是有意义的, 所以特开一篇用于US6,897,363的翻译合作。

    厚积薄发 玉米种子 PH4CV 的专利说明书

    ----------------------------------------

    我将按照这个提纲附上原文, 有兴趣的可以选择自己熟悉的段落翻译跟贴, 未来汇总。

    为便于查询和管理, 和翻译无关的跟贴, 请跟于最末非翻译区。谢谢。

    --------------------------------------------

    文摘 (ABSTRACT)

    发明领域(FIELD OF THE INVENTION) 厚积薄发

    发明背景 (BACKGROUND OF THE INVENTION )

    1)玉米自交系的开发(Development of Maize Inbred Lines)

    2)玉米杂交系的开发 (Development of Maize Hybrids)

    发明概述(SUMMARY OF THE INVENTION )

    1)定义(Definitions )

    2)适合地区的定义(Definitions for Area of Adaptability ) 厚积薄发

    发明的详细描述(DETAILED DESCRIPTION OF THE INVENTION)

    1)发明进一步的具体表征(Further Embodiments of the Invention )

    1。抗害虫或抗疾病转基因(Transgenes that Confer Resistance to Pests or Disease and that Encode)

    2。耐除草药剂的转基因(Transgenes that Confer Resistance to a Herbicide)

    3。具有附加值的转基因(Transgenes that Confer or Contribute to a Value-Added Trait)

    4。控制雄性不育的转基因(Genes that Control Male-Sterility)

    工业适用性(INDUSTRIAL APPLICABILITY ) 厚积薄发

    PH4CV性能实例(PERFORMANCE EXAMPLES OF PH4CV)

    1)自交系比较(Inbred Comparisons)

    2)杂交系比较(Hybrid Comparisons)

    3)通过SSR的基因标记物(Genetic Marker Profile through SSR)

    4)种子储蓄(Deposits)

    权利要求(CLAIMS)

    通宝推:大水,王二狗,厚积薄发,

    本帖一共被 1 帖 引用 (帖内工具实现)
    • 家园 【译文总成】(更新至10月5日)

      发明领域

      此项发明用于玉米的培育,具体的是关于名为PH4CV的自交玉米系的培育。

      发明背景

      对植物育种的目标是, 把各种理想特性, 结合在一个单一品种或杂交种。对于大田作物,这些特质可能包括抗病虫害,耐炎热和干旱,减少农作物成熟时间,提高产量,质量和更好的农艺性状。随着许多农作物机械收获, 均匀的特征, 如植物发芽和群立,成长率,成熟度,以及植物和穗位高,是重要的。

      田间作物繁殖, 可以利用植物的授粉方法的技术。一种植物是自花授粉,如果从一花花粉转移到另一个相同或同一植物的花朵。一种植物是同胞授粉,当同一系内个体之间相互授粉。一种植物是异系授粉,如果花粉来自一个不同的系的不同的植株。这里所用术语“交叉授粉”和“外交”并不包括自花授粉或同胞花授粉。

      植物经过许多代, 自花授粉和选型,成为在几乎所有基因位点纯合型的, 产生一个真正的繁育后代的单一种群。两种不同的纯系交叉产生的杂种植株的单一种群,可能在许多基因位点是杂合的。在多个基因位点杂合的, 两种植物的杂交,将产生一个杂合植物的种群,它是基因和表形都不单一的杂种植株。

      玉米(玉米属),通常在美国称为玉米,可以通过自花授粉和异花授粉技术培育。玉米在同一植株上有单独分开的雄花和雌花, 分别位于流苏和穗上。玉米天然授粉发生时, 风把雄穗花粉吹到突出于玉米穗的顶部的丝上。

      一个提供可靠控制植物雄性生育的方法,带来提高植物育种的机会。玉米杂交品种的开发,真正依靠某种雄性不育系统。有几种方式可以调控一个玉米植物,使之不育。这些方式包括人工或机械去势(或去顶端雄穗),细胞质遗传或核基因雄性不育的使用方式,使用杀雄剂或类似的方式。

      杂交玉米种子的产生通常是通过包含人工或机械去顶端雄穗的去雄系统。两个玉米自交系间隔种植在一块地里,把其中一个玉米系的带花粉雄穗去掉(雌株)。只要对外源玉米花粉有足够的隔离,去顶端雄穗的自交系的玉米穗只能被另一间隔种植的自交系的玉米株致孕(雄株),由此产生的种子是杂交的,并且此种子形成杂交植株。

      使用细胞质雄性不育(CMS)的自交系, 可避免费力繁琐的去顶端雄穗的过程。CMS自交系的植株是雄性不育的, 来源于细胞质,而不是核的基因的多种因素。因此,这一特点是完全通过玉米植株母本继承的,因为只有雌株提供受精种子的细胞质。CMS不育系植株通过来自另一个非不育自交系的花粉而受孕。从第二个自交系的花粉可能会或不会贡献使杂合植株成为雄性可育的的基因。同样的杂交种子,一部分来自去顶端雄穗的玉米, 另一部分来自采用CMS系统得到的,可以混合起来,以保证有足够量的花粉用于杂合种株长成时的致孕。

      有很多种赋予基因雄性不育的方法可供选择,比如布拉尔等人在美国专利4654465和4727219中披露的位于基因组不同点位的多种变异基因, 和帕特森在美国专利3861709和3710511中描述了染色体易位, 可造成遗传雄性不育。这些专利以及这里所引用的所有专利,专利申请和出版物均供参考。除了这些方法,先锋公司的阿尔伯特森等人的美国专利5432068,已经开发出核基因雄性不育的系统包括:

      发现确定了一个和雄性生殖至关重要的基因;

      哑化这个和雄性生育关键的内源性基因;

      从重要的雄性生育基因中去掉内源性的启动子, 代之以一个可诱导的启动子;

      把这个基因工程改造过的基因插入到植物中;

      从而创造一种植物雄性不育的植株, 因为可诱导的启动子处于关闭状态, 导致雄性生育基因不能被转录。通过诱导, 或”打开”, 启动子, 从而使雄性生育的基因被转录, 生育能力得到恢复。

      这些方法,和造成基因雄性不育的其他方法,每个拥有自己的优点和缺点。一些其他方法使用各式各样的手段,比如给植物移入一段基因, 这个基因编码一个和雄性组织特异性启动子相关的细胞毒性物质, 或者是反义基因系统,找到与生育相关的基因, 把它的反义基因插入到植株中(见:Fabinjanski,等。EPO89/3010153.8出版物号329308和PCT申请PCT/CA90/00037作为90/08828出版)。

      另一个控制雄性不育的系统,利用的是杀雄剂。 杀雄剂不是基因系统,而是一个化学品外用。这些化学物质影响和雄性生育能力相关的关键细胞。这些化学品的应用只影响施用杀雄剂的生长季节植物的生育能力.(见卡尔森,格伦河,美国专利号4936904)。对杀雄剂的应用,应用时间和基因型特异性往往限制了该方法的有效性, 并且它不能用于所有的情况。

      玉米自交系的开发

      雄性不育自交系的利用仅是在玉米杂交种生产中的要素之一。本专利已知和应用的植物育种技术在玉米育种方案中, 包括但不限于, 轮回选择,回交,系谱选育,限制性片段长度多态性提高甄选,遗传标记提高甄选,加倍单倍体和改造。通常,这些技术的组合被加以使用。在玉米育种方案中, 玉米杂交种的开发需要,总体来讲包括,开发纯合自交系,这些纯合自交系的互交,以及对互交作物的评价。

      玉米育种方案,结合了从两个或多个自交系的遗传背景或其他各种来源为种质的育种种群, 从中新自交系经过自交和选择所需的表型种群得到开发。新自交系与其他自交系交叉育种, 在这些杂交种中进行评估,以确定其中哪些具有商业潜力。在玉米育种项目中为开发具有显着的遗传进展的品种, 所进行的植物育种和杂交开发,是价格昂贵,而且费时的过程。

      良种繁殖开始于两个基因型的互交,例如两个优良自交系,每个自交系可以有一个或多个在其他自交系缺乏或互补的理想特性。如果这两个原始父本母本没有提供所有需要的特点,可以引入其他来源的种群育种。在系谱选育法中,优越的植株体自交和连续进行子代选择。在随后子代的选育中, 由于自花授粉和选择的结果, 杂合条件下的品系逐渐成为纯合自交的品系。通常在系谱选育种法中,连续进行5个或更多的子代自交和选择:F1→F2,F2→F 3,F3→F4,F4→F5, 等. 经过足够数量的近亲育种,连续子代将有助于提高被开发的自交系种子的质量。最好是,这个自交系在95%或以上的位点包含纯合等位基因。

      回交可以用来改善一种自交系和由那些自交系形成的杂交系。回交可以从供体亲本, 转移一特定所需的特征,到一个被称为轮回亲本自交系的品系上, 这一轮回亲本自交系从总体上具有良好的农艺性状, 但是还缺乏那一理想的特征。这个把所需特征转移到一个具有整体良好的农艺性状自交系的过程, 可以通过首先把一个轮回亲本和供体亲本(非轮回亲本)互交而实现。这种交叉交配的后代,然后返回与轮回亲本进行交配, 然后从得到的后代选择来自非轮回亲本的所需的特性, 和轮回亲本的特征。通常经过从轮回亲本选择所需的特性的四代或更多代回交, 后代将包含除了控制轮回亲本所需基因以外的轮回亲本的所有基因。然而,如果能够在选种中使用分子标记, 或使用优异种质为供体亲本, 就可以减少回交子代的数量。最后回交得到的一代进行自交,就能得到带有被转移基因的纯种后代。回交也可与系谱选育结合使用,用于开发新的自交系。例如,可以产生一个F1, 它与其亲本之一回交,就可产生BC1,BC2,BC3代等. 后代经过自交和选择,这样新生成的自交系具有许多轮回亲本的属性和一些来自非轮回亲本的所需要的属性。这种方法利用了在新的杂交育种中对于育种者具有显著价值的轮回亲本的使用价值和优势。

      轮回选择是在育种方案中, 用以提高植物种群使用的一个方法。该方法需要单株交叉相互授粉,形成子代,然后再生长。优越的后代,然后通过以下任何的方法加以选择,包括单体种植,半同胞子代,全同胞子代,自交后代和顶交。选定的后代相互授粉,形成另一个植物后代。此优势植物经过种植,良种再次经过选择并且交叉相互授粉。回选是一个循环过程,因此可以根据需要重复多次的。轮回选择的目标是改善种群的特点。改进后的种群可以被用来作为获得杂交后代的自交系的育种材料的来源, 或者作为一种合成品种的亲本。一个合成品种是由若干自交系相互交叉育种产生的后代。当与分子标记增强的选择性共用时, 广选就成为一种有用的技术。

      诱变育种是许多能引入新的自交系性状的方法之一。自发或人为引起的突变是植物育种者获得可变性的有用的来源。人工诱变的目标是增加一个理想特性的突变率。增加突变率可通过许多不同的方法, 包括温度,长期种子贮存,组织培养条件,辐射,如X射线,伽玛射线(如钴60或铯137),中子,(在一个原子反应堆产生的铀235核裂变的产物),β辐射(由放射性同位素磷32或碳14放射的),或紫外线辐射(最好是2500至2900纳米的辐射),或化学诱变剂(如碱基类似物(5溴尿嘧啶),相关化合物(8 -乙氧基咖啡因),抗生素(链黑菌素),烷基化剂(硫芥气,氮芥,环氧化物,乙酰胺,硫酸盐,磺酸盐,砜,内酯),叠氮化物,羟胺,亚硝酸,或吖啶的。一旦通过诱变的性状观察得到理想性状, 此性状便可通过传统育种技术被纳入现有的种质中。诱变育种的详情,可参照这里披露的文献, 由费荷编辑的“种植品种发展原理”,1993年麦克米伦出版公司。

      分子标记,包括如下的技术,如同工酶电泳,限制性片段长度多态性(RFLPs),随机扩增多态DNAs(RAPDs),随机引物聚合酶链反应(AP- PCR)技术,扩增的DNA指纹图谱法(DAF) ,特征扩增区序列(SCARs),扩增片段长度多态性(AFLPs),简单序列重复(SSRs)和单核苷酸多态性(SNPs),都是可用于植物育种的方法。其中一个分子标志物的用处是定量性状位点(QTL)定位。 QTL定位就是使用分子标记,这些分子标记和可定量测量性状的等位基因密切相关。在育种过程中的种子选择, 是通过根据植物的基因组中, 产生正效应的等位基因所联系的标记积累和/或产生负面效应的等位基因的标记消除为基础的。

      分子标记也可用在定性性状选育进程中。例如,在回交育种计划中, 与等位基因密切相关的标记或者标记内含有实际相关的等位基因序列的分子标记,可用于选择含有感兴趣的等位基因的植株。分子标记也可以用来选择轮回亲本的基因组和避免选择供体亲本的基因组。使用此程序, 可以减少留在被选植株中供体亲本基因组的数量。它也可以用来减少轮回亲本回交方案所需的回交的数目。分子标记在遴选过程中的使用通常被称为遗传标记提高甄选。

      在育种中, 生产双单倍体也可用于玉米自交系的研发。双单倍体是由杂合体加倍一组染色体(1N),产生一种完全同合的个体。比如,见万等人的“通过秋水仙素处理源于花药的玉米愈伤组织来提高双单倍体植株的有效产量”,理论与应用遗传,77:889-892,1989。这可能是有利的,因为这个过程省略了通过由杂合子源的多代的自交来得到一个纯合植株。

      玉米杂交系的开发

      玉米单交是由两个自交系,各自有一个基因型补充了另一个基因型, 交叉杂交的结果。第一代杂交后代是指定为F 1。在玉米育种中的一个商业杂交品种的开发,只在F 1杂种植株中找寻。 F1杂交种比他们的父母亲代的自交种更有优势。这种杂种活力,或杂种优势,可以体现在许多基因性状中,包括增加营养生长和增加产量。

      一个在玉米杂交育种的发展计划包括三个步骤:(1)从各种植物种质资源库选择植株进行最初的育种杂交;(2)从育种杂交所选的植物中, 进行几代自交繁殖, 产生一系列自交系产品,这些自交系品种,虽然互不相同,但品种可靠,是高度一致的系列;(3)通过所选自交系与不同自交系互交,产生杂交品种。在玉米的育种过程中,品系的活力降低。当两个不同的自交系杂交产生杂种代的时候, 活力得到恢复。自交系纯合性和同质性的一个重要结果是,一对选定的玉米自交系之间产生的杂交代, 永远是相同的。一旦通过自交系杂交,确定得到了品性优良的杂交子代,只要自交系父母的同质性长期保持, 杂交种子可以无限复制。

      当两个自交系杂交产生F 1后代时, 单交杂种就产生了。双交种是从四个自交系成对双交(A X B和C ×D),然后两个F 1杂种代再相交(A×B)×(C×D)。三维交叉杂种代是从三个自交系产生的, 首先其中两个自交系交叉育种, 由此产生的杂种代F1, 与第三个自交系交叉育种(A X B)× C。 F1杂交代的许多杂交优势和均匀一致性在下一代丢失(F2)。因此,从杂交产生的种子不能用于种植的原种。

      杂交种子的生产需要消除或失活母本产生的花粉。不完全去除或灭活的花粉提供了自花授粉的潜力。这无意中自花授粉产生的种子可能会不留意的与杂交种子收获和包装在一起。此外,由于田地里父本种植在母本旁边, 由于父本自花授粉产生的种子, 无意中收获并与杂交种子包装在一起概率是很低的。一旦把袋子里杂交种子拿来种植,是有可能识别和选出这些自花授粉植物。这些自花授粉的植物遗传上相当于用于产生杂交种的一个自交系品系。虽然玉米自交系产生的种子与杂交种子混于一袋的可能性存在,发生这种情况的可能性非常低,因为会仔细留意避免此类种子混杂进来。值得一提的是杂交种子是出售给种植者用于生产谷物或饲料, 而不是用于繁殖或种子生产。

      这些自花授粉植物, 通过与杂交植株对比, 其降低的活力, 可以被熟悉植物育种的人识别并选择出来。自交系的植株, 通过它们营养生长和/或繁殖特性的缺乏活力的外观可以被鉴别出来,这些特征包括较低的植株高度,较小的玉米,玉米及其核的形状,穗轴颜色或其它特性。

      辩识这些自花授粉玉米系也可通过分子标记分析来完成。见”The Identification of Female Selfs in Hybrid Maize: A Comparison Using Electrophoresis and Morphology”, Smith, J. S. C. and Wych, R. D., Seed Science and Technology 14, pp. 1-8 (1995), 披露的内容通过引用明确纳入此处。通过这些技术,自交玉米系的纯合性可以通过分析基因组各基因点位的等位基因组成来确证。这些方法允许对本文所披露的发明快速鉴定。另见, “Identification of Atypical Plants in Hybrid Maize Seed by Postcontrol and Electrophoresis” Sarca, V. et al., Probleme de Genetica Teoritica si Aplicata Vol. 20 (1) p. 29-42.

      由于对于本领域技术人员是显而易见的,上述方法仅仅是, 那些本领域技术人员可以通过使用不同种质获得自交系的各种方法中的一些而已。还有其它方法,上面的例子仅用于说明。

      玉米是一个重要和有价值的大田作物。因此,植物育种者的持续的目标是发展高产的, 基于玉米自交系品种的农艺稳定的, 玉米杂交种。追求这一目标的原因是显而易见的:根据投入获得粮食生产最大化和减少农作物对于病虫害和环境压力的易感性。为了实现这一目标,玉米育种者必须选择和开发优质自交亲本品系用于产生杂交子代。这就需要对分离种群中出现的遗传独特个体, 加以识别和选择。该分离种群是交叉育种, 与在许多基因位点的等位基因的特异结合的独立配类所带来的特殊的基因型, 结合的结果。从交叉育种中选择任何一个带有特定的基因型的个体的概率是无限的, 因为有大量分隔的基因, 和这些基因的无限的组合方式,这些基因中的某些基因,可能是密切相关联的。然而,交叉育种个体子代的遗传变异允许鉴别出稀有和有价值的新基因型。这些新的基因型既是不可预测的,也不是价值增加的,而是通过选择方法,环境和育种员的行动组合表现出遗传变异的结果。一旦确定,有可能利用常规育种和可预见的方法发展保留了最初的育种员开发的难得和宝贵的新基因型的后代。

      即使交叉育种的父母本的整个基因型已经被表明出来, 并且所需要的基因型已知,如果有也只有少数的具有所需基因型的个体可能在一个大的F 2群体分离种群中被发现。在本领域具有普通技能的育种员应用原始的父母本再次产生同样的玉米系是极不可能的,因为育种员无法指导基因组是如何结合的, 或者基因组将如何应对环境条件。这种不可预知性, 在优质新玉米自交系开发中, 带来大量的科研资源的支出的结果。一旦这样的玉米系被开发出来, 它的社会价值是巨大的,因为它是重要的推动种质基作为一个整体的发展,以维持或改善如产量,抗病,抗虫害和在极端条件下的植株表征等特点。

      一个育种员用各种方法来帮助确定哪些植株应该从分离种群中被选择出来, 最终哪些自交系品种将被用来开发用于商业的杂交种。除了对种质的知识和育种者使用的其它技巧,选择过程的一部分依赖于实验设计和相关联的统计分析。实验设计和统计分析来帮助确定哪些植株,植株的家系,并且最终 哪些自交系和杂交组合, 对于一个或多个感兴趣的特征, 有显著改善或不同。实验设计方法,用于评估的错误,即在两个自交系或两个杂交系品种的差异可以更准确地确定。统计分析包括平均值计算,确定方差来源的统计学意义,以及适当的方差分量计算。按照惯例, 无论是百分之五或百分之一的显着性水平,以确定对于一个给定的性状差异,是真实的发生或因环境或实验误差所致。

      在植物育种领域一项普通技术是, 如何评价两种植物品种的特性,来决定这些品种之间的两个性状表达是否存在显着性差异。例如,见这里给出的文献Fehr, Walt, Principles of Cultivar Development, p. 261-286 (1987) 。平均性状值可用于确定是否性状差异显著,最好是这些特点是测量来自相同的环境条件下生长的植物。

      一个种系的结合能力,以及该种系本身的性能,是一个选择被改良的玉米自交系的因素。结合能力是指一个种系作为父母代的,与其他种系形成杂交子代的贡献。为遴选超级优良品系而生成的杂交代, 被指定为测试杂交代。结合能力的一个衡量方法是使用育种价值。育种值是部分基于一些测试杂交代整体的平均值。这个平均值经过校正消除其中的环境影响,并且这个平均值根据已知品系间的遗传关系进行校正。

      发明概述

      根据本发明,提供了一种新型的玉米自交系,定名为PH4CV。这个发明,因而涉及到玉米自交系PH4CV的种子,玉米自交系PH4CV的植株,玉米自交系PH4CV植株的组成部分, 由玉米自交系PH4CV和其它玉米植株, 包括和来自合成或天然种群的玉米, 互交得到一种植株的方法, 产生一种在其遗传物质中含有一个或多个转基因的玉米植株的方法, 和由此转基因方法产生的玉米植株和玉米植株的组成部分。本发明还涉及经由玉米自交系PH4CV得到的玉米自交系植株及其组成部分,经由玉米自交系PH4CV得到其它玉米自交系的方法, 和由于使用这些方法得到的玉米自交系及其组成部分。本发明进一步涉及到杂交玉米种子,经由玉米自交系PH4CV和别的玉米品系交叉育种得到的植物和植物组成部分。

      2)适合地区的定义

      “适合地区”一词用于指代其环境条件非常适合该玉米系(PH4CV)的地区。它基于许多因素,例如:成熟所需的天数、抗虫性、抗病性、以及抗旱性。“适合地区”并不意味着该玉米系在适合地区的每一个地方都能生长,也不意味着该玉米系不能在适合地区之外生长。

      中部玉米种植地带:爱荷华,伊利诺伊,印第安纳

      干燥地带:北达科达,南达科达,内布拉斯加,堪萨斯,科罗拉多,以及俄克拉荷马等州的非灌溉地区。

      美国东部地区:俄亥俄,宾夕法尼亚,特拉华尔,马里兰,弗吉尼亚,以及西弗吉尼亚。

      美国中北部地区:明尼苏达和威斯康星。

      美加东北部地区:密歇根,纽约,佛蒙特,以及加拿大的安大略和魁北克。

      美国西北部:北达科达,南达科达,怀俄明,华盛顿,俄勒冈,蒙塔那,犹他,以及爱达荷。

      美国中南部:密苏里,田纳西,肯塔基,以及阿肯色。

      美国东南部:北卡罗来纳,南卡罗来纳,乔治亚,佛罗里达,阿拉巴马,密西西比,以及路易斯安娜。

      美国西南部:得克萨斯,俄克拉荷马,新墨西哥,以及亚利桑那

      美国西部:内布拉斯加,堪萨斯,科罗拉多,以及加里福利亚。

      欧洲濒海地区:法国,德国,比利时,和奥地利。

      发明的详细描述

      玉米自交系通常开发出来用于杂交玉米系的生产。玉米自交系需要高度均匀,大大纯合,重复性好,才能被有效用于商业化的杂交种的父母本。有很多分析方法可用来确定这些自交系纯合稳定性和特征。

      最古老和最传统的分析方法是对表型性状的观察。通过田间实验, 被研究的整个生命周期的玉米植株的数据得到收集。最常见的表型特征是植物形态,玉米棒和内核形态,抗病虫害,成熟和产量相关性状。

      除了表型观察,对植物的基因型也可以进行检查。植物的基因型,可用于识别同一品种或相关的品种植物。例如,基因型可以用来确定植物谱系。有许多基于实验的技术可用于分析,比较和鉴别植物基因型; 其中包括同工酶电泳,限制性片段长度多态性(RFLPs),随机扩增多态性DNAs(RAPD),任意引物聚合酶链反应(AP- PCR),DNA扩增指纹(DAF),序列特征扩增区域(SCARs),扩增片段长度多态性(AFLPs),简单序列重复(SSRs),它也被称为微卫星,和单核苷酸多态性(SNPs)。

      同工酶电泳和多态性在李的书中得到讨论,参考“玉米自交系及其分子标记,”玉米手册,(施普林格出版社,纽约公司1994年,在423-432页),被广泛用于确定基因组成。在玉米自交系中, 同工酶电泳有相对不多的几个可用的标记物和等位基因变异点。RFLPs允许更多的区别,因为他们有更高级别的玉米等位变异程度及大量可以被发现的标记。这两种方法与史密斯等人讨论的SSR技术比起来, 都已经显得黯然失色,参见“An evaluation of the utility of SSR loci as molecular markers in maize ( Zea mays L.): comparisons with data from RFLPs and pedigree”, Theoretical and Applied Genetics (1997) vol. 95 at 163-173 和

      Pejic et al., “Comparative analysis of genetic similarity among maize inbreds detected by RFLPs, RAPDs, SSRs, and AFLPs,” Theoretical and Applied Genetics (1998) at 1248-1255 . SSR技术比RFLP更为有效和实用; 同RFLP相比, SSR技术对应更多标记位点,被用于常规使用,每标记位点含有更多的等位基因。单核苷酸多态性可能也可以用来识别本发明的独特基因组成及保留独特基因组成的后代。各种分子标记技术可以结合使用,以提高整体的分析.

      玉米DNA分子标记连锁图谱的构建已经迅速的建立起来并且广泛的应用于遗传研究。参见一项次研究 Boppenmaier, et al., “Comparisons among strains of inbreds for RFLPs”, Maize Genetics Cooperative Newsletter, 65:1991, pg. 90。

      玉米自交系线PH4CV是一种黄色,凹型玉米自交系,十分适合在生产F1的第一代玉米杂交种用作雌性或雄性植株。玉米自交系线PH4CV最适合种植于美国中部玉米地带,东部,中南部,东南等地区,可以被用来生产, 基于比较相对成熟度等级系统的粮食收获湿度, 成熟度是113的杂交种。玉米自交系线PH4CV, 作为一个自交系, 表明良好的雌性产量和对南方玉米大斑病,斯蒂尤尔茨细菌性白叶枯病和灰斑病的良好耐受。玉米自交系线PH4CV, 作为自交系本身, 也有高于平均水平的耐受Diplodia,镰刀菌,以及赤穗腐烂的性质。在杂交组合中,自交系PH4CV表现出高产,良好的抗叶病性,低的玉米穗和植株的高度。

      自交品系, 在环境影响的极限内, 对于品种描述信息(表1)描述的所有特征, 表现出均匀稳定性。该自交系已经经过足够多代的自花授粉和耳棱,仔细照顾以确保纯合性和表型稳定并可用于商业化生产中。该玉米系的品质, 经过手工和隔离领域,对于均匀性的持续观察, 得到提高。没有观察到或预期观察到PH4CV的任何变异性状。

      玉米自交系线PH4CV,高度纯合,可以通过该农艺常用技术, 经过播种, 自花授粉或兄妹授粉, 保持足够隔离条件下的植株生长,收获所得种子, 得到复制。

      工业适用性

      玉米被用于人类食物、牲畜饲料、和工业原材料。玉米的食用用途,除了玉米粒供人类食用以外,还包括干磨和湿磨制品。主要的玉米干磨制品包括玉米渣(cha)子、玉米片粥、以及面粉。玉米湿磨业则提供玉米芡粉、玉米糖浆、和食用葡萄糖。玉米油作为干磨和湿磨工业的副产品,则来自于玉米胚芽。

      玉米的谷粒和非谷粒部分也被广泛地用作牲畜饲料,主要是用于喂养肉牛、奶牛、猪、以及家禽。

      玉米的工业用途包括制备乙醇、湿磨工业生产的玉米淀粉、以及干磨工业生产的玉米面粉。玉米淀粉和面粉的工业应用基于它们的功能性质,例如粘稠度、形成薄膜的能力、胶着性和悬浮颗粒的能力。玉米淀粉和面粉在造纸业和纺织业里也有应用。其他工业用途包括制备胶粘剂、建筑材料、铸造模具、洗涤用淀粉(浆洗)、爆炸物、油井封泥、以及其他矿业应用。

      玉米的非谷粒部分也在工业中有应用:例如,玉米秆和玉米苞叶被用于制纸和人造壁板,玉米棒子被用做燃料和制备焦炭。

      自交玉米系 PH4CV的种子、从这种种子产生的植株、通过与该自交系杂交而获得的杂交玉米、杂交种子,还有从杂交玉米和上述各物的转基因版本得到的各种成分,能被用做人类食物、牲畜饲料和工业原料。

      权利要求:

      1. 一个指定为PH4CV的玉米自交系种子,此玉米自交系的代表种子已被储存在美国标准生物品收藏中心登录号PTA – 4673下。

      2. 通过种植权利要求1中的种子得到的一个玉米植株,或玉米植株的一个组成部分。

      3. 权利要求2中的, 已经被去顶端雄穗, 的玉米植株.

      4. 由权利要求2中的植株得到的可再生细胞的组织培养基。

      5. 由权利要求4中的组织培养基得到的原生质体。

      6. 权利要求4中的组织培养基,其中组织培养的细胞是来源于下列植物组织之一,包括叶,花粉,胚,根,根尖,花药,丝穗,花,核,玉米穗,穗轴,稻壳和秸秆.

      7. 从权利要求4的组织培养基再生成的一个玉米植株,所说的植株具有自交系PH4CV所有的种子形态和生理特性. 此自交系PH4CV的代表种子,已被储备在美国标准生物品收藏中心登录号PTA- 4673下.

      8. 一个产生F1杂交玉米种子的方法,其中包括将权利要求2中得到的玉米植株与另一个不同的玉米植株互交, 产生的F1杂交玉米种子。

      9. 一个产生雄性不育玉米植株的方法, 此雄性不育玉米植株是改变权利要求2中的玉米植株, 使之被赋予雄性不育的核酸分子。

      10. 由权利要求9中的方法产生的雄性不育玉米植物。

      11. 产生一种抗除草剂玉米植株的方法, 这种植株是把权利要求2中的玉米转换使之带有抗除草剂的转基因。

      12. 由权利要求11中的方法所产生的, 一种抗除草剂玉米植株。

      13. 权利要求12中的玉米植株,其中转基因具有抵抗来自下列一组除草剂中的一种: 咪唑啉,磺酰脲类,草甘膦,草铵膦,L型膦,三嗪类和腈。

      14. 一个产生抗虫玉米的植物的方法,包括改造权利要求2中的植株,使之具有抗虫转基因。

      15. 一种由权利要求14中的方法所产生的抗虫玉米植株。

      16. 权利要求15中的玉米植株,其转基因编码一种苏云金芽孢杆菌内毒素。

      17. 一个产生抗病玉米植物的方法,此方法改造权利要求2中的植株,使之具有抗病转基因。

      18. 由权利要求17产生的一种抗疾病的玉米植株.

      19. 一个生产含有低量植酸含量的玉米植株的方法,包括转化权利要求2中的玉米植株, 使之带有编码植酸酶的转基因.

      20. 由权利要求19的方法产生的一个含有低量植酸含量的玉米植株.

      21. 一种方法能产生脂肪酸代谢得到改变, 或者糖代谢得到改变的玉米植株, 此方法包括改变权利要求2中的玉米植株, 使之带有编码一种蛋白质的转基因, 这种蛋白质选自, 包括果糖转移酶,果聚糖生成酶,α-淀粉酶,蔗糖酶和淀粉分支酶或者编码硬脂-ACP去饱和酶的一个反义蛋白。

      22. 由权利要求21中的方法生产出的一个脂肪酸代谢或者碳水化合物代谢得到改良或者修饰的玉米植物。

      23. 22中的玉米植株,其转基因带有选自从蜡质淀粉和直链增加淀粉的一个特点。

      24. 一个玉米植株,或其中一个组成部分,具有自交系PH4CV所有的形态和生理特性,此自交系的代表种子已被存放于登录号是PTA- 4673的美国标准生物品收藏中心。

      25. 引入玉米自交系PH4CV所需的特征的一种方法,包括:

      (a) 把PH4CV种子成长起来的PH4CV植物,其中代表性的种子已经储存在ATCC登录号PTA- 4673,与另一种具有所需特征的植物互交,产生F1后代植株, 其中所需的特征是从雄性不育,具除草剂抗性,抗虫性,抗病性和蜡质性淀粉组成的植株组中选择;

      (b)选择具有所需植株性状的F1后代植株来产生选择性的F1后代植株;

      (c)把被选择的后代植株与PH4CV植物选择回交后产生回交子代植株;

      (d)选择在表1中列出的具有所需特质和生理与形态特性的玉米自交系PH4CV的回交子代植株, 以产生被选择的回交子代植株;

      (e)重复步骤(c)和(d)连续三次或更多次, 以产生第四或更高代的回交后代植株, 在同样的生长环境条件下, 与5%显著性水平, 这些植株具有所需的特质和表1所列的玉米自交系PH4CV所有的生理和形态特征。

      26. 由权利要求25中的方法产生的植物,其中,在同样的生长环境条件下, 与5%显著性水平, 该植株具有所需的特质和表1所列的玉米自交系PH4CV所有的生理和形态特征。

      27. 权利要求26中产生的植株,其中的特点是抗除草剂, 这种耐受是指对来自咪唑啉,磺酰脲类,草甘膦,草铵膦,L型膦,三嗪类和腈, 中的一种除草剂的耐受。

      28. 权利要求26中的植株,其中所需的特质是抗虫性, 这种抗虫性来自编码苏云金杆菌内毒素的转基因。

      29. 权利要求26中的植株,其中所需的特质是雄性不育, 这种性状是由能带来雄性不育的细胞质的核酸分子赋予的。

      30. 一种用于改变玉米自交系PH4CV的脂肪酸代谢,植酸代谢, 或糖代谢的方法, 包括:

      (a)把PH4CV种子成长起来的PH4CV植物,其中代表性的种子已经储存在ATCC登录号PTA- 4673下,与另一种玉米的植株互交,此另一种玉米线核酸分子编码来自下列一组酶中的某一种, 包括植酸酶,果糖转移酶,果聚糖生成酶,α-淀粉酶,蔗糖酶和淀粉分支酶或者编码硬脂-ACP去饱和酶的一个反义蛋白;

      (b)选择具有所说核酸分子的F1后代植株来产生选择性的F1后代植株;

      (c)把被选择的后代植株与PH4CV植物选择回交后产生回交子代植株;

      (d)选择在表1中列出的具有所说核酸分子和生理与形态特性的玉米自交系PH4CV的回交子代植株, 以产生被选择的回交子代植株;

      (e)重复步骤(c)和(d)连续三次或更多次, 以产生第四或更高代的回交后代植株, 在同样的生长环境条件下, 与5%显著性水平, 这些植株具有所说核酸分子和表1所列的玉米自交系PH4CV所有的生理和形态特征。

      31. 由权利要求30的方法产生的, 具有改变的脂肪酸代谢,改变的植酸代谢,改变的糖代谢, 的一个植株, 其中,在同样的生长环境条件下, 与5%显著性水平, 该植株具有所说核酸分子和表1所列的玉米自交系PH4CV所有的生理和形态特征。

      通宝推:张三李四王五,厚积薄发,
    • 家园 【原文】ABSTRACT

      ABSTRACT

      An inbred maize line, designated PH4CV, the plants and seeds of inbred maize line PH4CV, methods for producing a maize plant, either inbred or hybrid, produced by crossing the inbred maize line PH4CV with another maize plant, and hybrid maize seeds and plants produced by crossing the inbred line PH4CV with another maize line or plant and to methods for producing a maize plant containing in its genetic material one or more transgenes and to the transgenic maize plants produced by that method. This invention also relates to inbred maize lines derived from inbred maize line PH4CV, to methods for producing other inbred maize lines derived from inbred maize line PH4CV and to the inbred maize lines derived by the use of those methods.

      31 Claims, No Drawings

    • 家园 【原文】FIELD OF THE INVENTION

      FIELD OF THE INVENTION

      This invention is in the field of maize breeding, specifically relating to an inbred maize line designated PH4CV.

    • 家园 【原文】BACKGROUND OF THE INVENT

      BACKGROUND OF THE INVENTION

      The goal of plant breeding is to combine in a single variety or hybrid, various desirable traits. For field crops, these traits may include resistance to diseases and insects, tolerance to heat and drought, reducing the time to crop maturity, greater yield, and better agronomic quality. With mechanical harvesting of many crops, uniformity of plant characteristics such as germination and stand establishment, growth rate, maturity, and plant and ear height, is important.

      Field crops are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is sib-pollinated when individuals within the same family or line are used for pollination. A plant is cross-pollinated if the pollen comes from a flower on a different plant from a different family or line. The terms “cross-pollination” and “out-cross” as used herein do not include self-pollination or sib-pollination.

      Plants that have been self-pollinated and selected for type for many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny. A cross between two different homozygous lines produces a uniform population of hybrid plants that may be heterozygous for many gene loci. A cross of two plants, each heterozygous at a number of gene loci will produce a population of hybrid plants that differ genetically and will not be uniform.

      Maize ( zea mays L.), often referred to as corn in the United States, can be bred by both self-pollination and cross-pollination techniques. Maize has separate male and female flowers on the same plant, located on the tassel and the ear, respectively. Natural pollination occurs in maize when wind blows pollen from the tassels to the silks that protrude from the tops of the ears.

      A reliable method of controlling male fertility in plants offers the opportunity for improved plant breeding. This is especially true for development of maize hybrids, which relies upon some sort of male sterility system. There are several ways in which a maize plant can be manipulated so that it is male sterile. These include use of manual or mechanical emasculation (or detasseling), use of cytoplasmic genetic or nuclear genetic male sterility, use of gametocides and is the like.

      Hybrid maize seed is typically produced by a male sterility system incorporating manual or mechanical detasseling. Alternate strips of two maize inbreds are planted in a field, and the pollen-bearing tassels are removed from one of the inbreds (female). Provided that there is sufficient isolation from sources of foreign maize pollen, the ears of the detasseled inbred will be fertilized only from the other inbred (male), and the resulting seed is therefore hybrid and will form hybrid plants.

      The laborious detasseling process can be avoided by using cytoplasmic male-sterile (CMS) inbreds. Plants of a CMS inbred are male sterile as a result of factors resulting from the cytoplasmic, as opposed to the nuclear, genome. Thus, this characteristic is inherited exclusively through the female parent in maize plants, since only the female provides cytoplasm to the fertilized seed. CMS plants are fertilized with pollen from another inbred that is not male-sterile. Pollen from the second inbred may or may not contribute genes that make the hybrid plants male-fertile. The same hybrid seed, a portion produced from detasseled fertile maize and a portion produced using the CMS system, can be blended to insure that adequate pollen loads are available for fertilization when the hybrid plants are grown.

      There are several methods of conferring genetic male sterility available, such as multiple mutant genes at separate locations within the genome that confer male sterility, as disclosed in U.S. Pat. Nos. 4,654,465 and 4,727,219 to Brar et al. and chromosomal translocations as described by Patterson in U.S. Pat. Nos. 3,861,709 and 3,710,511. These and all patents, patent applications and publications referred to herein are incorporated by reference. In addition to these methods, Albertsen et al., of Pioneer Hi-Bred, U.S. Pat. No. 5,432,068, have developed a system of nuclear male sterility which includes: identifying a gene which is critical to male fertility; silencing this native gene which is critical to male fertility; removing the native promoter from the essential male fertility gene and replacing it with an inducible promoter; inserting this genetically engineered gene back into the plant; and thus creating a plant that is male sterile because the inducible promoter is not “on” resulting in the male fertility gene not being transcribed. Fertility is restored by inducing, or turning “on”, the promoter, which in turn allows the gene that confers male fertility to be transcribed.

      These, and the other methods of conferring genetic male sterility in the art, each possess their own benefits and drawbacks. Some other methods use a variety of approaches such as delivering into the plant a gene encoding a cytotoxic substance associated with a male tissue specific promoter or an antisense system in which a gene critical to fertility is identified and an antisense to that gene is inserted in the plant (see: Fabinjanski, et al. EPO 89/3010153.8 publication no. 329,308 and PCT application PCT/CA90/00037 published as WO 90/08828).

      Another system for controlling male sterility makes use of gametocides. Gametocides are not a genetic system, but rather a topical application of chemicals. These chemicals affect cells that are critical to male fertility. The application of these chemicals affects fertility in the plants only for the growing season in which the gametocide is applied (see Carlson, Glenn R., U.S. Pat. No. 4,936,904). Application of the gametocide, timing of the application and genotype specificity often limit the usefulness of the approach and it is not appropriate in all situations.

      • 家园 【译文】发明背景

        发明背景

        对植物育种的目标是, 把各种理想特性, 结合在一个单一品种或杂交种。对于大田作物,这些特质可能包括抗病虫害,耐炎热和干旱,减少农作物成熟时间,提高产量,质量和更好的农艺性状。随着许多农作物机械收获, 均匀的特征, 如植物发芽和群立,成长率,成熟度,以及植物和穗位高,是重要的。

        田间作物繁殖, 可以利用植物的授粉方法的技术。一种植物是自花授粉,如果从一花花粉转移到另一个相同或同一植物的花朵。一种植物是同胞授粉,当同一系内个体之间相互授粉。一种植物是异系授粉,如果花粉来自一个不同的系的不同的植株。这里所用术语“交叉授粉”和“外交”并不包括自花授粉或同胞花授粉。

        植物经过许多代, 自花授粉和选型,成为在几乎所有基因位点纯合型的, 产生一个真正的繁育后代的单一种群。两种不同的纯系交叉产生的杂种植株的单一种群,可能在许多基因位点是杂合的。在多个基因位点杂合的, 两种植物的杂交,将产生一个杂合植物的种群,它是基因和表形都不单一的杂种植株。

        玉米(玉米属),通常在美国称为玉米,可以通过自花授粉和异花授粉技术培育。玉米在同一植株上有单独分开的雄花和雌花, 分别位于流苏和穗上。玉米天然授粉发生时, 风把雄穗花粉吹到突出于玉米穗的顶部的丝上。

        一个提供可靠控制植物雄性生育的方法,带来提高植物育种的机会。玉米杂交品种的开发,真正依靠某种雄性不育系统。有几种方式可以调控一个玉米植物,使之不育。这些方式包括人工或机械去势(或去顶端雄穗),细胞质遗传或核基因雄性不育的使用方式,使用杀雄剂或类似的方式。

        杂交玉米种子的产生通常是通过包含人工或机械去顶端雄穗的去雄系统。两个玉米自交系间隔种植在一块地里,把其中一个玉米系的带花粉雄穗去掉(雌株)。只要对外源玉米花粉有足够的隔离,去顶端雄穗的自交系的玉米穗只能被另一间隔种植的自交系的玉米株致孕(雄株),由此产生的种子是杂交的,并且此种子形成杂交植株。

        使用细胞质雄性不育(CMS)的自交系, 可避免费力繁琐的去顶端雄穗的过程。CMS自交系的植株是雄性不育的, 来源于细胞质,而不是核的基因的多种因素。因此,这一特点是完全通过玉米植株母本继承的,因为只有雌株提供受精种子的细胞质。CMS不育系植株通过来自另一个非不育自交系的花粉而受孕。从第二个自交系的花粉可能会或不会贡献使杂合植株成为雄性可育的的基因。同样的杂交种子,一部分来自去顶端雄穗的玉米, 另一部分来自采用CMS系统得到的,可以混合起来,以保证有足够量的花粉用于杂合种株长成时的致孕。

        有很多种赋予基因雄性不育的方法可供选择,比如布拉尔等人在美国专利4654465和4727219中披露的位于基因组不同点位的多种变异基因, 和帕特森在美国专利3861709和3710511中描述了染色体易位, 可造成遗传雄性不育。这些专利以及这里所引用的所有专利,专利申请和出版物均供参考。除了这些方法,先锋公司的阿尔伯特森等人的美国专利5432068,已经开发出核基因雄性不育的系统包括:

        发现确定了一个和雄性生殖至关重要的基因;

        哑化这个和雄性生育关键的内源性基因;

        从重要的雄性生育基因中去掉内源性的启动子, 代之以一个可诱导的启动子;

        把这个基因工程改造过的基因插入到植物中;

        从而创造一种植物雄性不育的植株, 因为可诱导的启动子处于关闭状态, 导致雄性生育基因不能被转录。通过诱导, 或”打开”, 启动子, 从而使雄性生育的基因被转录, 生育能力得到恢复。

        这些方法,和造成基因雄性不育的其他方法,每个拥有自己的优点和缺点。一些其他方法使用各式各样的手段,比如给植物移入一段基因, 这个基因编码一个和雄性组织特异性启动子相关的细胞毒性物质, 或者是反义基因系统,找到与生育相关的基因, 把它的反义基因插入到植株中(见:Fabinjanski,等。EPO89/3010153.8出版物号329308和PCT申请PCT/CA90/00037作为90/08828出版)。

        另一个控制雄性不育的系统,利用的是杀雄剂。 杀雄剂不是基因系统,而是一个化学品外用。这些化学物质影响和雄性生育能力相关的关键细胞。这些化学品的应用只影响施用杀雄剂的生长季节植物的生育能力.(见卡尔森,格伦河,美国专利号4936904)。对杀雄剂的应用,应用时间和基因型特异性往往限制了该方法的有效性, 并且它不能用于所有的情况。

        通宝推:厚积薄发,Chaoshk,

        本帖一共被 1 帖 引用 (帖内工具实现)
      • 家园 【原文】Development of Maize Inb

        Development of Maize Inbred Lines

        The use of male sterile inbreds is but one factor in the production of maize hybrids. Plant breeding techniques known in the art and used in a maize plant breeding program include, but are not limited to, recurrent selection, backcrossing, pedigree breeding, restriction fragment length polymorphism enhanced selection, genetic marker enhanced selection, making double haploids, and transformation. Often a combination of these techniques is used. The development of maize hybrids in a maize plant breeding program requires, in general, the development of homozygous inbred lines, the crossing of these lines, and the evaluation of the crosses.

        Maize plant breeding programs combine the genetic backgrounds from two or more inbred lines or various other germplasm sources into breeding populations from which new inbred lines are developed by selfing and selection of desired phenotypes. The new inbreds are crossed with other inbred lines and the hybrids from these crosses are evaluated to determine which of those have commercial potential. Plant breeding and hybrid development, as practiced in a maize plant breeding program developing significant genetic advancement, are expensive and time-consuming processes.

        Pedigree breeding starts with the crossing of two genotypes, such as two elite inbred lines, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive filial generations. In the succeeding filial generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding, five or more successive filial generations of selfing and selection is practiced: F 1 →F 2 ; F 2 →F 3 ; F 3 →F 4 ; F 4 →F 5 , etc. After a sufficient amount of inbreeding, successive filial generations will serve to increase seed of the developed inbred. Preferably, an inbred line comprises homozygous alleles at about 95% or more of its loci.

        Backcrossing can be used to improve an inbred line and a hybrid that is made using those inbreds. Backcrossing can be used to transfer a specific desirable trait from one line, the donor parent, to an inbred called the recurrent parent which has overall good agronomic characteristics yet lacks that desirable trait. This transfer of the desirable trait into an inbred with overall good agronomic characteristics can be accomplished by first crossing a recurrent parent and a donor parent (non-recurrent parent). The progeny of this cross is then mated back to the recurrent parent followed by selection in the resultant progeny for the desired trait to be transferred from the non-recurrent parent as well as selection for the characteristics of the recurrent parent. Typically after four or more backcross generations with selection for the desired trait and the characteristics of the recurrent parent, the progeny will contain essentially all genes of the recurrent parent except for the genes controlling the desired trait. However, the number of backcross generations can be less if molecular markers are used during selection or elite germplasm is used as the donor parent. The last backcross generation is then selfed to give pure breeding progeny for the gene(s) being transferred. Backcrossing can also be used in conjunction with pedigree breeding to develop new inbred lines. For example, an F1 can be created that is backcrossed to one of its parent lines to create a BC1, BC2, BC3, etc. Progeny are selfed and selected so that the newly developed inbred has many of the attributes of the recurrent parent and some of the desired attributes of the non-recurrent parent. This approach leverages the value and strengths of the recurrent parent for use in new hybrids and breeding which has very significant value for a breeder.

        Recurrent selection is a method used in a plant breeding program to improve a population of plants. The method entails individual plants cross-pollinating with each other to form progeny, which are then grown. The superior progeny are then selected by any number of methods, which include individual plant, half-sib progeny, full-sib progeny, selfed progeny and topcrossing. The selected progeny are cross-pollinated with each other to form progeny for another population. This population is planted and again superior plants are selected to cross-pollinate with each other. Recurrent selection is a cyclical process and therefore can be repeated as many times as desired. The objective of recurrent selection is to improve the traits of a population. The improved population can then be used as a source of breeding material to obtain inbred lines to be used in hybrids or used as parents for a synthetic cultivar. A synthetic cultivar is the resultant progeny formed by the intercrossing of several selected inbreds. Mass selection is a useful technique when used in conjunction with molecular marker enhanced selection.

        Mutation breeding is one of the many methods of introducing new traits into inbred lines. Mutations that occur spontaneously or are artificially induced can be useful sources of variability for a plant breeder. The goal of artificial mutagenesis is to increase the rate of mutation for a desired characteristic. Mutation rates can be increased by many different means including temperature, long-term seed storage, tissue culture conditions, radiation; such as X-rays, Gamma rays (e.g. cobalt 60 or cesium 137), neutrons, (produce of nuclear fission by uranium 235 on an atomic reactor), Beta radiation (emitted from radioisotopes such as phosphorus 32 or carbon 14), or ultraviolet radiation (preferably from 2500 to 2900 nm), or chemical mutagens (such as base analogues (5-bromo-uracil), related compounds (8-ethoxy caffeine), antibiotics (streptonigrin), alkylating agents (sulfur mustards, nitrogen mustards, epoxides, ethylenamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Once a desired trait is observed through mutagenesis the trait may then be incorporated into existing germplasm by traditional breeding techniques. Details of mutation breeding can be found in “Principals of Cultivar Development” Fehr, 1993 Macmillan Publishing Company the disclosure of which is incorporated herein by reference.

        Molecular markers, which includes markers identified through the use of techniques such as Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs), may be used in plant breeding methods. One use of molecular markers is Quantitative Trait Loci (QTL) mapping. QTL mapping is the use of markers, which are known to be closely linked to alleles that have measurable effects on a quantitative trait. Selection in the breeding process is based upon the accumulation of markers linked to the positive effecting alleles and/or the elimination of the markers linked to the negative effecting alleles from the plant's genome.

        Molecular markers can also be used during the breeding process for the selection of qualitative traits. For example, markers closely linked to alleles or markers containing sequences within the actual alleles of interest can be used to select plants that contain the alleles of interest during a backcrossing breeding program. The markers can also be used to select for the genome of the recurrent parent and against the genome of the donor parent. Using this procedure can minimize the amount of genome from the donor parent that remains in the selected plants. It can also be used to reduce the number of crosses back to the recurrent parent needed in a backcrossing program. The use of molecular markers in the selection process is often called genetic marker enhanced selection.

        The production of double haploids can also be used for the development of inbreds in the breeding program. Double haploids are produced by the doubling of a set of chromosomes (1N) from a heterozygous plant to produce a completely homozygous individual. For example, see Wan et al., “Efficient Production of Doubled Haploid Plants Through Colchicine Treatment of Anther-Derived Maize Callus”, Theoretical and Applied Genetics, 77:889-892, 1989. This can be advantageous because the process omits the generations of selfing needed to obtain a homozygous plant from a heterozygous source.

        • 家园 【译文】玉米自交系的开发

          玉米自交系的开发

          雄性不育自交系的利用仅是在玉米杂交种生产中的要素之一。本专利已知和应用的植物育种技术在玉米育种方案中, 包括但不限于, 轮回选择,回交,系谱选育,限制性片段长度多态性提高甄选,遗传标记提高甄选,加倍单倍体和改造。通常,这些技术的组合被加以使用。在玉米育种方案中, 玉米杂交种的开发需要,总体来讲包括,开发纯合自交系,这些纯合自交系的互交,以及对互交作物的评价。

          玉米育种方案,结合了从两个或多个自交系的遗传背景或其他各种来源为种质的育种种群, 从中新自交系经过自交和选择所需的表型种群得到开发。新自交系与其他自交系交叉育种, 在这些杂交种中进行评估,以确定其中哪些具有商业潜力。在玉米育种项目中为开发具有显着的遗传进展的品种, 所进行的植物育种和杂交开发,是价格昂贵,而且费时的过程。

          良种繁殖开始于两个基因型的互交,例如两个优良自交系,每个自交系可以有一个或多个在其他自交系缺乏或互补的理想特性。如果这两个原始父本母本没有提供所有需要的特点,可以引入其他来源的种群育种。在系谱选育法中,优越的植株体自交和连续进行子代选择。在随后子代的选育中, 由于自花授粉和选择的结果, 杂合条件下的品系逐渐成为纯合自交的品系。通常在系谱选育种法中,连续进行5个或更多的子代自交和选择:F1→F2,F2→F 3,F3→F4,F4→F5, 等. 经过足够数量的近亲育种,连续子代将有助于提高被开发的自交系种子的质量。最好是,这个自交系在95%或以上的位点包含纯合等位基因。

          回交可以用来改善一种自交系和由那些自交系形成的杂交系。回交可以从供体亲本, 转移一特定所需的特征,到一个被称为轮回亲本自交系的品系上, 这一轮回亲本自交系从总体上具有良好的农艺性状, 但是还缺乏那一理想的特征。这个把所需特征转移到一个具有整体良好的农艺性状自交系的过程, 可以通过首先把一个轮回亲本和供体亲本(非轮回亲本)互交而实现。这种交叉交配的后代,然后返回与轮回亲本进行交配, 然后从得到的后代选择来自非轮回亲本的所需的特性, 和轮回亲本的特征。通常经过从轮回亲本选择所需的特性的四代或更多代回交, 后代将包含除了控制轮回亲本所需基因以外的轮回亲本的所有基因。然而,如果能够在选种中使用分子标记, 或使用优异种质为供体亲本, 就可以减少回交子代的数量。最后回交得到的一代进行自交,就能得到带有被转移基因的纯种后代。回交也可与系谱选育结合使用,用于开发新的自交系。例如,可以产生一个F1, 它与其亲本之一回交,就可产生BC1,BC2,BC3代等. 后代经过自交和选择,这样新生成的自交系具有许多轮回亲本的属性和一些来自非轮回亲本的所需要的属性。这种方法利用了在新的杂交育种中对于育种者具有显著价值的轮回亲本的使用价值和优势。

          轮回选择是在育种方案中, 用以提高植物种群使用的一个方法。该方法需要单株交叉相互授粉,形成子代,然后再生长。优越的后代,然后通过以下任何的方法加以选择,包括单体种植,半同胞子代,全同胞子代,自交后代和顶交。选定的后代相互授粉,形成另一个植物后代。此优势植物经过种植,良种再次经过选择并且交叉相互授粉。回选是一个循环过程,因此可以根据需要重复多次的。轮回选择的目标是改善种群的特点。改进后的种群可以被用来作为获得杂交后代的自交系的育种材料的来源, 或者作为一种合成品种的亲本。一个合成品种是由若干自交系相互交叉育种产生的后代。当与分子标记增强的选择性共用时, 广选就成为一种有用的技术。

          诱变育种是许多能引入新的自交系性状的方法之一。自发或人为引起的突变是植物育种者获得可变性的有用的来源。人工诱变的目标是增加一个理想特性的突变率。增加突变率可通过许多不同的方法, 包括温度,长期种子贮存,组织培养条件,辐射,如X射线,伽玛射线(如钴60或铯137),中子,(在一个原子反应堆产生的铀235核裂变的产物),β辐射(由放射性同位素磷32或碳14放射的),或紫外线辐射(最好是2500至2900纳米的辐射),或化学诱变剂(如碱基类似物(5溴尿嘧啶),相关化合物(8 -乙氧基咖啡因),抗生素(链黑菌素),烷基化剂(硫芥气,氮芥,环氧化物,乙酰胺,硫酸盐,磺酸盐,砜,内酯),叠氮化物,羟胺,亚硝酸,或吖啶的。一旦通过诱变的性状观察得到理想性状, 此性状便可通过传统育种技术被纳入现有的种质中。诱变育种的详情,可参照这里披露的文献, 由费荷编辑的“种植品种发展原理”,1993年麦克米伦出版公司。

          分子标记,包括如下的技术,如同工酶电泳,限制性片段长度多态性(RFLPs),随机扩增多态DNAs(RAPDs),随机引物聚合酶链反应(AP- PCR)技术,扩增的DNA指纹图谱法(DAF) ,特征扩增区序列(SCARs),扩增片段长度多态性(AFLPs),简单序列重复(SSRs)和单核苷酸多态性(SNPs),都是可用于植物育种的方法。其中一个分子标志物的用处是定量性状位点(QTL)定位。 QTL定位就是使用分子标记,这些分子标记和可定量测量性状的等位基因密切相关。在育种过程中的种子选择, 是通过根据植物的基因组中, 产生正效应的等位基因所联系的标记积累和/或产生负面效应的等位基因的标记消除为基础的。

          分子标记也可用在定性性状选育进程中。例如,在回交育种计划中, 与等位基因密切相关的标记或者标记内含有实际相关的等位基因序列的分子标记,可用于选择含有感兴趣的等位基因的植株。分子标记也可以用来选择轮回亲本的基因组和避免选择供体亲本的基因组。使用此程序, 可以减少留在被选植株中供体亲本基因组的数量。它也可以用来减少轮回亲本回交方案所需的回交的数目。分子标记在遴选过程中的使用通常被称为遗传标记提高甄选。

          在育种中, 生产双单倍体也可用于玉米自交系的研发。双单倍体是由杂合体加倍一组染色体(1N),产生一种完全同合的个体。比如,见万等人的“通过秋水仙素处理源于花药的玉米愈伤组织来提高双单倍体植株的有效产量”,理论与应用遗传,77:889-892,1989。这可能是有利的,因为这个过程省略了通过由杂合子源的多代的自交来得到一个纯合植株。

          通宝推:厚积薄发,

          本帖一共被 1 帖 引用 (帖内工具实现)
      • 家园 【原文】Development of Maize Hyb

        玉米杂交系的开发 (Development of Maize Hybrids)

        A single cross maize hybrid results from the cross of two inbred lines, each of which has a genotype that complements the genotype of the other. The hybrid progeny of the first generation is designated F 1 . In the development of commercial hybrids in a maize plant breeding program, only the F 1 hybrid plants are sought. F 1 hybrids are more vigorous than their inbred parents. This hybrid vigor, or heterosis, can be manifested in many polygenic traits, including increased vegetative growth and increased yield.

        The development of a maize hybrid in a maize plant breeding program involves three steps: (1) the selection of plants from various germplasm pools for initial breeding crosses; (2) the selfing of the selected plants from the breeding crosses for several generations to produce a series of inbred lines, which, although different from each other, breed true and are highly uniform; and (3) crossing the selected inbred lines with different inbred lines to produce the hybrids. During the inbreeding process in maize, the vigor of the lines decreases. Vigor is restored when two different inbred lines are crossed to produce the hybrid. An important consequence of the homozygosity and homogeneity of the inbred lines is that the hybrid between a defined pair of inbreds will always be the same. Once the inbreds that give a superior hybrid have been identified, the hybrid seed can be reproduced indefinitely as long as the homogeneity of the inbred parents is maintained.

        A single cross hybrid is produced when two inbred lines are crossed to produce the F 1 progeny. A double cross hybrid is produced from four inbred lines crossed in pairs (A×B and C×D) and then the two F 1 hybrids are crossed again (A×B)×(C×D). A three-way cross hybrid is produced from three inbred lines where two of the inbred lines are crossed (A×B) and then the resulting F 1 hybrid is crossed with the third inbred (A×B)×C. Much of the hybrid vigor and uniformity exhibited by F 1 hybrids is lost in the next generation (F 2 ). Consequently, seed produced from hybrids is not used for planting stock.

        Hybrid seed production requires elimination or inactivation of pollen produced by the female parent. Incomplete removal or inactivation of the pollen provides the potential for self-pollination. This inadvertently self-pollinated seed may be unintentionally harvested and packaged with hybrid seed. Also, because the male parent is grown next to the female parent in the field there is the very low probability that the male selfed seed could be unintentionally harvested and packaged with the hybrid seed. Once the seed from the hybrid bag is planted, it is possible to identify and select these self-pollinated plants. These self-pollinated plants will be genetically equivalent to one of the inbred lines used to produce the hybrid. Though the possibility of inbreds being included hybrid seed bags exists, the occurrence is very low because much care is taken to avoid such inclusions. It is worth noting that hybrid seed is sold to growers for the production of grain or forage and not for breeding or seed production.

        These self-pollinated plants can be identified and selected by one skilled in the art due to their decreased vigor when compared to the hybrid. Inbreds are identified by their less vigorous appearance for vegetative and/or reproductive characteristics, including shorter plant height, small ear size, ear and kernel shape, cob color, or other characteristics.

        Identification of these self-pollinated lines can also be accomplished through molecular marker analyses. See, “The Identification of Female Selfs in Hybrid Maize: A Comparison Using Electrophoresis and Morphology”, Smith, J. S. C. and Wych, R. D., Seed Science and Technology 14, pp. 1-8 (1995), the disclosure of which is expressly incorporated herein by reference. Through these technologies, the homozygosity of the self-pollinated line can be verified by analyzing allelic composition at various loci along the genome. Those methods allow for rapid identification of the invention disclosed herein. See also, “Identification of Atypical Plants in Hybrid Maize Seed by Postcontrol and Electrophoresis” Sarca, V. et al., Probleme de Genetica Teoritica si Aplicata Vol. 20 (1) p. 29-42.

        As is readily apparent to one skilled in the art, the foregoing are only some of the various ways by which the inbred can be obtained by those looking to use the germplasm. Other means are available, and the above examples are illustrative only.

        Maize is an important and valuable field crop. Thus, a continuing goal of plant breeders is to develop high-yielding maize hybrids that are agronomically sound based on stable inbred lines. The reasons for this goal are obvious: to maximize the amount of grain produced with the inputs used and minimize susceptibility of the crop to pests and environmental stresses. To accomplish this goal, the maize breeder must select and develop superior inbred parental lines for producing hybrids. This requires identification and selection of genetically unique individuals that occur in a segregating population. The segregating population is the result of a combination of crossover events plus the independent assortment of specific combinations of alleles at many gene loci that results in specific genotypes. The probability of selecting any one individual with a specific genotype from a breeding cross is infinitesimal due to the large number of segregating genes and the unlimited recombinations of these genes, some of which may be closely linked. However, the genetic variation among individual progeny of a breeding cross allows for the identification of rare and valuable new genotypes. These new genotypes are neither predictable nor incremental in value, but rather the result of manifested genetic variation combined with selection methods, environments and the actions of the breeder. Once identified, it is possible to utilize routine and predictable breeding methods to develop progeny that retain the rare and valuable new genotypes developed by the initial breeder.

        Even if the entire genotypes of the parents of the breeding cross were characterized and a desired genotype known, only a few if any individuals having the desired genotype may be found in a large segregating F 2 population. It would be very unlikely that a breeder of ordinary skill in the art would able to recreate the same line twice from the very same original parents, as the breeder is unable to direct how the genomes combine or how they will interact with the environmental conditions. This unpredictability results in the expenditure of large amounts of research resources in the development of a superior new maize inbred line. Once such a line is developed its value to society is substantial since it is important to advance the germplasm base as a whole in order to maintain or improve traits such as yield, disease resistance, pest resistance and plant performance in extreme conditions.

        A breeder uses various methods to help determine which plants should be selected from the segregating populations and ultimately which inbred lines will be used to develop hybrids for commercialization. In addition to the knowledge of the germplasm and other skills the breeder uses, a part of the selection process is dependent on experimental design coupled with the use of statistical analysis. Experimental design and statistical analysis are used to help determine which plants, which family of plants, and finally which inbred lines and hybrid combinations are significantly better or different for one or more traits of interest. Experimental design methods are used to assess error so that differences between two inbred lines or two hybrid lines can be more accurately determined. Statistical analysis includes the calculation of mean values, determination of the statistical significance of the sources of variation, and the calculation of the appropriate variance components. Either a five or a one percent significance level is customarily used to determine whether a difference that occurs for a given trait is real or due to the environment or experimental error.

        One of ordinary skill in the art of plant breeding would know how to evaluate the traits of two plant varieties to determine if there is no significant difference between the two traits expressed by those varieties. For example, see Fehr, Walt, Principles of Cultivar Development, p. 261-286 (1987) which is incorporated herein by reference. Mean trait values may be used to determine whether trait differences are significant, and preferably the traits are measured on plants grown under the same environmental conditions.

        Combining ability of a line, as well as the performance of the line per se, is a factor in the selection of improved maize inbreds. Combining ability refers to a line's contribution as a parent when crossed with other lines to form hybrids. The hybrids formed for the purpose of selecting superior lines are designated testcrosses. One way of measuring combining ability is by using breeding values. Breeding values are based in part on the overall mean of a number of testcrosses. This mean is then adjusted to remove environmental effects and it is adjusted for known genetic relationships among the lines.

        • 家园 【译文】玉米杂交系的开发

          玉米杂交系的开发 (Development of Maize Hybrids)

          玉米单交是由两个自交系,各自有一个基因型补充了另一个基因型, 交叉杂交的结果。第一代杂交后代是指定为F 1。在玉米育种中的一个商业杂交品种的开发,只在F 1杂种植株中找寻。 F1杂交种比他们的父母亲代的自交种更有优势。这种杂种活力,或杂种优势,可以体现在许多基因性状中,包括增加营养生长和增加产量。

          一个在玉米杂交育种的发展计划包括三个步骤:(1)从各种植物种质资源库选择植株进行最初的育种杂交;(2)从育种杂交所选的植物中, 进行几代自交繁殖, 产生一系列自交系产品,这些自交系品种,虽然互不相同,但品种可靠,是高度一致的系列;(3)通过所选自交系与不同自交系互交,产生杂交品种。在玉米的育种过程中,品系的活力降低。当两个不同的自交系杂交产生杂种代的时候, 活力得到恢复。自交系纯合性和同质性的一个重要结果是,一对选定的玉米自交系之间产生的杂交代, 永远是相同的。一旦通过自交系杂交,确定得到了品性优良的杂交子代,只要自交系父母的同质性长期保持, 杂交种子可以无限复制。

          当两个自交系杂交产生F 1后代时, 单交杂种就产生了。双交种是从四个自交系成对双交(A X B和C ×D),然后两个F 1杂种代再相交(A×B)×(C×D)。三维交叉杂种代是从三个自交系产生的, 首先其中两个自交系交叉育种, 由此产生的杂种代F1, 与第三个自交系交叉育种(A X B)× C。 F1杂交代的许多杂交优势和均匀一致性在下一代丢失(F2)。因此,从杂交产生的种子不能用于种植的原种。

          杂交种子的生产需要消除或失活母本产生的花粉。不完全去除或灭活的花粉提供了自花授粉的潜力。这无意中自花授粉产生的种子可能会不留意的与杂交种子收获和包装在一起。此外,由于田地里父本种植在母本旁边, 由于父本自花授粉产生的种子, 无意中收获并与杂交种子包装在一起概率是很低的。一旦把袋子里杂交种子拿来种植,是有可能识别和选出这些自花授粉植物。这些自花授粉的植物遗传上相当于用于产生杂交种的一个自交系品系。虽然玉米自交系产生的种子与杂交种子混于一袋的可能性存在,发生这种情况的可能性非常低,因为会仔细留意避免此类种子混杂进来。值得一提的是杂交种子是出售给种植者用于生产谷物或饲料, 而不是用于繁殖或种子生产。

          这些自花授粉植物, 通过与杂交植株对比, 其降低的活力, 可以被熟悉植物育种的人识别并选择出来。自交系的植株, 通过它们营养生长和/或繁殖特性的缺乏活力的外观可以被鉴别出来,这些特征包括较低的植株高度,较小的玉米,玉米及其核的形状,穗轴颜色或其它特性。

          辩识这些自花授粉玉米系也可通过分子标记分析来完成。见”The Identification of Female Selfs in Hybrid Maize: A Comparison Using Electrophoresis and Morphology”, Smith, J. S. C. and Wych, R. D., Seed Science and Technology 14, pp. 1-8 (1995), 披露的内容通过引用明确纳入此处。通过这些技术,自交玉米系的纯合性可以通过分析基因组各基因点位的等位基因组成来确证。这些方法允许对本文所披露的发明快速鉴定。另见, “Identification of Atypical Plants in Hybrid Maize Seed by Postcontrol and Electrophoresis” Sarca, V. et al., Probleme de Genetica Teoritica si Aplicata Vol. 20 (1) p. 29-42.

          由于对于本领域技术人员是显而易见的,上述方法仅仅是, 那些本领域技术人员可以通过使用不同种质获得自交系的各种方法中的一些而已。还有其它方法,上面的例子仅用于说明。

          玉米是一个重要和有价值的大田作物。因此,植物育种者的持续的目标是发展高产的, 基于玉米自交系品种的农艺稳定的, 玉米杂交种。追求这一目标的原因是显而易见的:根据投入获得粮食生产最大化和减少农作物对于病虫害和环境压力的易感性。为了实现这一目标,玉米育种者必须选择和开发优质自交亲本品系用于产生杂交子代。这就需要对分离种群中出现的遗传独特个体, 加以识别和选择。该分离种群是交叉育种, 与在许多基因位点的等位基因的特异结合的独立配类所带来的特殊的基因型, 结合的结果。从交叉育种中选择任何一个带有特定的基因型的个体的概率是无限的, 因为有大量分隔的基因, 和这些基因的无限的组合方式,这些基因中的某些基因,可能是密切相关联的。然而,交叉育种个体子代的遗传变异允许鉴别出稀有和有价值的新基因型。这些新的基因型既是不可预测的,也不是价值增加的,而是通过选择方法,环境和育种员的行动组合表现出遗传变异的结果。一旦确定,有可能利用常规育种和可预见的方法发展保留了最初的育种员开发的难得和宝贵的新基因型的后代。

          即使交叉育种的父母本的整个基因型已经被表明出来, 并且所需要的基因型已知,如果有也只有少数的具有所需基因型的个体可能在一个大的F 2群体分离种群中被发现。在本领域具有普通技能的育种员应用原始的父母本再次产生同样的玉米系是极不可能的,因为育种员无法指导基因组是如何结合的, 或者基因组将如何应对环境条件。这种不可预知性, 在优质新玉米自交系开发中, 带来大量的科研资源的支出的结果。一旦这样的玉米系被开发出来, 它的社会价值是巨大的,因为它是重要的推动种质基作为一个整体的发展,以维持或改善如产量,抗病,抗虫害和在极端条件下的植株表征等特点。

          一个育种员用各种方法来帮助确定哪些植株应该从分离种群中被选择出来, 最终哪些自交系品种将被用来开发用于商业的杂交种。除了对种质的知识和育种者使用的其它技巧,选择过程的一部分依赖于实验设计和相关联的统计分析。实验设计和统计分析来帮助确定哪些植株,植株的家系,并且最终 哪些自交系和杂交组合, 对于一个或多个感兴趣的特征, 有显著改善或不同。实验设计方法,用于评估的错误,即在两个自交系或两个杂交系品种的差异可以更准确地确定。统计分析包括平均值计算,确定方差来源的统计学意义,以及适当的方差分量计算。按照惯例, 无论是百分之五或百分之一的显着性水平,以确定对于一个给定的性状差异,是真实的发生或因环境或实验误差所致。

          在植物育种领域一项普通技术是, 如何评价两种植物品种的特性,来决定这些品种之间的两个性状表达是否存在显着性差异。例如,见这里给出的文献Fehr, Walt, Principles of Cultivar Development, p. 261-286 (1987) 。平均性状值可用于确定是否性状差异显著,最好是这些特点是测量来自相同的环境条件下生长的植物。

          一个种系的结合能力,以及该种系本身的性能,是一个选择被改良的玉米自交系的因素。结合能力是指一个种系作为父母代的,与其他种系形成杂交子代的贡献。为遴选超级优良品系而生成的杂交代, 被指定为测试杂交代。结合能力的一个衡量方法是使用育种价值。育种值是部分基于一些测试杂交代整体的平均值。这个平均值经过校正消除其中的环境影响,并且这个平均值根据已知品系间的遗传关系进行校正。


          本帖一共被 1 帖 引用 (帖内工具实现)
    • 家园 【原文】SUMMARY OF THE INVENTION

      SUMMARY OF THE INVENTION

      According to the invention, there is provided a novel inbred maize line, designated PH4CV. This invention thus relates to the seeds of inbred maize line PH4CV, to the plants of inbred maize line PH4CV, to plant parts of inbred maize line PH4CV, to methods for producing a maize plant produced by crossing the inbred maize line PH4CV with another maize plant, including a plant that is part of a synthetic or natural population, and to methods for producing a maize plant containing in its genetic material one or more transgenes and to the transgenic maize plants and plant parts produced by that method. This invention also relates to inbred maize lines and plant parts derived from inbred maize line PH4CV, to methods for producing other inbred maize lines derived from inbred maize line PH4CV and to the inbred maize lines and their parts derived by the use of those methods. This invention further relates to hybrid maize seeds, plants, and plant parts produced by crossing the inbred line PH4CV with another maize line.

      • 家园 【译文】发明概述

        发明概述(SUMMARY OF THE INVENTION )

        According to the invention, there is provided a novel inbred maize line, designated PH4CV. This invention thus relates to the seeds of inbred maize line PH4CV, to the plants of inbred maize line PH4CV, to plant parts of inbred maize line PH4CV, to methods for producing a maize plant produced by crossing the inbred maize line PH4CV with another maize plant, including a plant that is part of a synthetic or natural population, and to methods for producing a maize plant containing in its genetic material one or more transgenes and to the transgenic maize plants and plant parts produced by that method. This invention also relates to inbred maize lines and plant parts derived from inbred maize line PH4CV, to methods for producing other inbred maize lines derived from inbred maize line PH4CV and to the inbred maize lines and their parts derived by the use of those methods. This invention further relates to hybrid maize seeds, plants, and plant parts produced by crossing the inbred line PH4CV with another maize line.

        根据本发明,提供了一种新型的玉米自交系,定名为PH4CV。这个发明,因而涉及到玉米自交系PH4CV的种子,玉米自交系PH4CV的植株,玉米自交系PH4CV植株的组成部分, 由玉米自交系PH4CV和其它玉米植株, 包括和来自合成或天然种群的玉米, 互交得到一种植株的方法, 产生一种在其遗传物质中含有一个或多个转基因的玉米植株的方法, 和由此转基因方法产生的玉米植株和玉米植株的组成部分。本发明还涉及经由玉米自交系PH4CV得到的玉米自交系植株及其组成部分,经由玉米自交系PH4CV得到其它玉米自交系的方法, 和由于使用这些方法得到的玉米自交系及其组成部分。本发明进一步涉及到杂交玉米种子,经由玉米自交系PH4CV和别的玉米品系交叉育种得到的植物和植物组成部分。


        本帖一共被 1 帖 引用 (帖内工具实现)
      • 家园 【翻译】定义

        定义(Definitions )

        Certain definitions used in the specification are provided below. Also in the examples that follow, a number of terms are used herein. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided. NOTE: ABS is in absolute terms and % MN is percent of the mean for the experiments in which the inbred or hybrid was grown. PCT designates that the trait is calculated as a percentage. % NOT designates the percentage of plants that did not exhibit a trait. For example, STKLDG % NOT is the percentage of plants in a plot that were not stalk lodged. These designators will follow the descriptors to denote how the values are to be interpreted.

        ABTSTK=ARTIFICIAL BRITTLE STALK. A count of the number of “snapped” plants per plot following machine snapping. A snapped plant has its stalk completely snapped at a node between the base of the plant and the node above the ear. Expressed as percent of plants that did not snap.

        ALLELE. Any of one or more alternative forms of a genetic sequence. In a diploid cell or organism, the two alleles of a given sequence occupy corresponding loci on a pair of homologous chromosomes.

        ANT ROT=ANTHRACNOSE STALK ROT ( Colletotrichum graminicola ). A 1 to 9 visual rating indicating the resistance to Anthracnose Stalk Rot. A higher score indicates a higher resistance.

        BACKCROSSING. Process in which a breeder crosses a progeny line back to one of the parental genotypes one or more times.

        BARPLT=BARREN PLANTS. The percent of plants per plot that was not barren (lack ears).

        BREEDING. The genetic manipulation of living organisms.

        BRTSTK=BRITTLE STALKS. This is a measure of the stalk breakage near the time of pollination, and is an indication of whether a hybrid or inbred would snap or break near the time of flowering under severe winds. Data are presented as percentage of plants that did not snap.

        CLDTST=COLD TEST. The percent of plants that germinate under cold test conditions.

        CLN=CORN LETHAL NECROSIS. Synergistic interaction of maize chlorotic mottle virus (MCMV) in combination with either maize dwarf mosaic virus (MDMV-A or MDMV-B) or wheat streak mosaic virus (WSMV). A 1 to 9 visual rating indicating the resistance to Corn Lethal Necrosis. A higher score indicates a higher resistance.

        COMRST=COMMON RUST ( Puccinia sorghi ). A 1 to 9 visual rating indicating the resistance to Common Rust. A higher score indicates a higher resistance.

        D/D=DRYDOWN. This represents the relative rate at which a hybrid will reach acceptable harvest moisture compared to other hybrids on a 1-9 rating scale. A high score indicates a hybrid that dries relatively fast while a low score indicates a hybrid that dries slowly.

        DIPERS= DIPLODIA EAR MOLD SCORES ( Diplodia maydis and Diplodia macrospora ). A 1 to 9 visual rating indicating the resistance to Diplodia Ear Mold. A higher score indicates a higher resistance.

        DIPROT= DIPLODIA STALK ROT SCORE. Score of stalk rot severity due to Diplodia ( Diplodia maydis ). Expressed as a 1 to 9 score with 9 being highly resistant.

        DRPEAR=DROPPED EARS. A measure of the number of dropped ears per plot and represents the percentage of plants that did not drop ears prior to harvest.

        D/T=DROUGHT TOLERANCE. This represents a 1-9 rating for drought tolerance, and is based on data obtained under stress conditions. A high score indicates good drought tolerance and a low score indicates poor drought tolerance.

        EARHT=EAR HEIGHT. The ear height is a measure from the ground to the highest placed developed ear node attachment and is measured in centimeters.

        EARMLD=General Ear Mold. Visual rating (1-9 score) where a “1” is very susceptible and a “9” is very resistant. This is based on overall rating for ear mold of mature ears without determining the specific mold organism, and may not be predictive for a specific ear mold.

        EARSZ=EAR SIZE. A 1 to 9 visual rating of ear size. The higher the rating the larger the ear size.

        EBTSTK=EARLY BRITTLE STALK. A count of the number of “snapped” plants per plot following severe winds when the corn plant is experiencing very rapid vegetative growth in the V5-V8 stage. Expressed as percent of plants that did not snap.

        ECB1LF=EUROPEAN CORN BORER FIRST GENERATION LEAF FEEDING ( Ostrinia nubilalis ). A 1 to 9 visual rating indicating the resistance to preflowering leaf feeding by first generation European Corn Borer. A higher score indicates a higher resistance.

        ECB2IT=EUROPEAN CORN BORER SECOND GENERATION INCHES OF TUNNELING ( Ostrinia nubilalis ). Average inches of tunneling per plant in the stalk.

        ECB2SC=EUROPEAN CORN BORER SECOND GENERATION ( Ostrinia nubilalis ). A 1 to 9 visual rating indicating post flowering degree of stalk breakage and other evidence of feeding by European Corn Borer, Second Generation. A higher score indicates a higher resistance.

        ECBDPE=EUROPEAN CORN BORER DROPPED EARS ( Ostrinia nubilalis ). Dropped ears due to European Corn Borer. Percentage of plants that did not drop ears under second generation corn borer infestation.

        EGRWTH=EARLY GROWTH. This is a measure of the relative height and size of a corn seedling at the 2-4 leaf stage of growth. This is a visual rating (1 to 9), with 1 being weak or slow growth, 5 being average growth and 9 being strong growth. Taller plants, wider leaves, more green mass and darker color constitute higher score.

        ELITE INBRED. An inbred that contributed desirable qualities when used to produce commercial hybrids. An elite inbred may also be used in further breeding.

        ERTLDG=EARLY ROOT LODGING. Early root lodging is the percentage of plants that do not root lodge prior to or around anthesis; plants that lean from the vertical axis at an approximately 30° angle or greater would be counted as root lodged.

        ERTLPN=Early root lodging. An estimate of the percentage of plants that do not root lodge prior to or around anthesis; plants that lean from the vertical axis at an approximately 30° angle or greater would be considered as root lodged.

        ERTLSC=EARLY ROOT LODGING SCORE. Score for severity of plants that lean from a vertical axis at an approximate 30-degree angle or greater, which typically results from strong winds prior to or around flowering recorded within 2 weeks of a wind event. Expressed as a 1 to 9 score with 9 being no lodging.

        ESTCNT=EARLY STAND COUNT. This is a measure of the stand establishment in the spring and represents the number of plants that emerge on per plot basis for the inbred or hybrid.

        EYESPT=Eye Spot ( Kabatiella zeae or Aureobasidium zeae ). A 1 to 9 visual rating indicating the resistance to Eye Spot. A higher score indicates a higher resistance.

        FUSERS= FUSARIUM EAR ROT SCORE ( Fusarium moniliforme or Fusarium subglutinans ). A 1 to 9 visual rating indicating the resistance to Fusarium ear rot. A higher score indicates a higher resistance.

        GDU=Growing Degree Units. Using the Barger Heat Unit Theory, which assumes that maize growth occurs in the temperature range 50° F.-86° F. and that temperatures outside this range slow down growth; the maximum daily heat unit accumulation is 36 and the minimum daily heat unit accumulation is 0. The seasonal accumulation of GDU is a major factor in determining maturity zones.

        GDUSHD=GDU TO SHED. The number of growing degree units (GDUs) or heat units required for an inbred line or hybrid to have approximately 50 percent of the plants shedding pollen and is measured from the time of planting. Growing degree units are calculated by the Barger Method, where the heat units for a 24-hour period are: GDU = ( Max . temp . + Min . temp . ) 2 - 50

        The highest maximum temperature used is 86° F. and the lowest minimum temperature used is 50° F. For each inbred or hybrid it takes a certain number of GDUs to reach various stages of plant development.

        GDUSLK=GDU TO SILK. The number of growing degree units required for an inbred line or hybrid to have approximately 50 percent of the plants with silk emerg

        • 家园 【翻译】定义 - 续

          定义(Definitions )- 续

          KSZDCD=KERNEL SIZE DISCARD. The percent of discard seed; calculated as the sum of discarded tip kernels and extra large kernels.

          LINKAGE. Refers to a phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.

          LINKAGE DISEQUILIBRIUM. Refers to a phenomenon wherein alleles tend to remain together in linkage groups when segregating from parents to offspring, with a greater frequency than expected from their individual frequencies.

          L/POP=YIELD AT LOW DENSITY. Yield ability at relatively low plant densities on a 1-9 relative system with a higher number indicating the hybrid responds well to low plant densities for yield relative to other hybrids. A 1, 5, and 9 would represent very poor, average, and very good yield response, respectively, to low plant density.

          LRTLDG=LATE ROOT LODGING. Late root lodging is the percentage of plants that do not root lodge after anthesis through harvest; plants that lean from the vertical axis at an approximately 30° angle or greater would be counted as root lodged.

          LRTLPN=LATE ROOT LODGING. Late root lodging is an estimate of the percentage of plants that do not root lodge after anthesis through harvest; plants that lean from the vertical axis at an approximately 30° angle or greater would be considered as root lodged.

          LRTLSC=LATE ROOT LODGING SCORE. Score for severity of plants that lean from a vertical axis at an approximate 30-degree angle or greater which typically results from strong winds after flowering. Recorded prior to harvest when a root-lodging event has occurred. This lodging results in plants that are leaned or “lodged” over at the base of the plant and do not straighten or “goose-neck” back to a vertical position. Expressed as a 1 to 9 score with 9 being no lodging.

          MDMCPX=MAIZE DWARF MOSAIC COMPLEX (MDMV=Maize Dwarf Mosaic Virus and MCDV=Maize Chlorotic Dwarf Virus). A 1 to 9 visual rating indicating the resistance to Maize Dwarf Mosaic Complex. A higher score indicates a higher resistance.

          MST=HARVEST MOISTURE. The moisture is the actual percentage moisture of the grain at harvest.

          MSTADV=MOISTURE ADVANTAGE. The moisture advantage of variety #1 over variety #2 as calculated by: MOISTURE of variety #2MOISTURE of variety #1=MOISTURE ADVANTAGE of variety #1.

          NLFBLT=Northern Leaf Blight ( Helminthosporium turcicum or Exserohilum turcicum ). A 1 to 9 visual rating indicating the resistance to Northern Leaf Blight. A higher score indicates a higher resistance.

          OILT=GRAIN OIL. Absolute value of oil content of the kernel as predicted by Near-infrared Transmittance and expressed as a percent of dry matter.

          PEDIGREE DISTANCE. Relationship among generations based on their ancestral links as evidenced in pedigrees. May be measured by the distance of the pedigree from a given starting point in the ancestry.

          PLTHT=PLANT HEIGHT. This is a measure of the height of the plant from the ground to the tip of the tassel in centimeters.

          POLSC=POLLEN SCORE. A 1 to 9 visual rating indicating the amount of pollen shed. The higher the score the more pollen shed.

          POLWT=POLLEN WEIGHT. This is calculated by dry weight of tassels collected as shedding commences minus dry weight from similar tassels harvested after shedding is complete.

          POP K/A=PLANT POPULATIONS. Measured as 1000s per acre.

          POP ADV=PLANT POPULATION ADVANTAGE. The plant population advantage of variety #1 over variety #2 as calculated by PLANT POPULATION of variety #2PLANT POPULATION of variety #1=PLANT POPULATION ADVANTAGE of variety #1.

          PRM=PREDICTED RELATIVE MATURITY. This trait, predicted relative maturity, is based on the harvest moisture of the grain. The relative maturity rating is based on a known set of checks and utilizes standard linear regression analyses and is also referred to as the Comparative Relative Maturity Rating System that is similar to the Minnesota Relative Maturity Rating System.

          PRMSHD=A relative measure of the growing degree units (GDU) required to reach 50% pollen shed. Relative values are predicted values from the linear regression of observed GDU's on relative maturity of commercial checks.

          PROT=GRAIN PROTEIN. Absolute value of protein content of the kernel as predicted by Near-Infrared Transmittance and expressed as a percent of dry matter.

          RTLDG=ROOT LODGING. Root lodging is the percentage of plants that do not root lodge; plants that lean from the vertical axis at an approximately 30° angle or greater would be counted as root lodged.

          RTLADV=ROOT LODGING ADVANTAGE. The root lodging advantage of variety #1 over variety #2.

          SCTGRN=SCATTER GRAIN. A 1 to 9 visual rating indicating the amount of scatter grain (lack of pollination or kernel abortion) on the ear. The higher the score the less scatter grain.

          SDGVGR=SEEDLING VIGOR. This is the visual rating (1 to 9) of the amount of vegetative growth after emergence at the seedling stage (approximately five leaves). A higher score indicates better vigor.

          SEL IND=SELECTION INDEX. The selection index gives a single measure of the hybrid's worth based on information for up to five traits. A maize breeder may utilize his or her own set of traits for the selection index. One of the traits that is almost always included is yield. The selection index data presented in the tables represent the mean value averaged across testing stations.

          SLFBLT=SOUTHERN LEAF BLIGHT ( Helminthosporium maydis or Bipolaris maydis ). A 1 to 9 visual rating indicating the resistance to Southern Leaf Blight. A higher score indicates a higher resistance.

          SOURST=SOUTHERN RUST ( Puccinia polysora ). A 1 to 9 visual rating indicating the resistance to Southern Rust. A higher score indicates a higher resistance.

          STAGRN=STAY GREEN. Stay green is the measure of plant health near the time of black layer formation (physiological maturity). A high score indicates better late-season plant health.

          STDADV=STALK STANDING ADVANTAGE. The advantage of variety #1 over variety #2 for the trait STK CNT.

          STKCNT=NUMBER OF PLANTS. This is the final stand or number of plants per plot.

          STKLDG=STALK LODGING REGULAR. This is the percentage of plants that did not stalk lodge (stalk breakage) at regular harvest (when grain moisture is between about 20 and 30%) as measured by either natural lodging or pushing the stalks and determining the percentage of plants that break below the ear.

          STKLDL=LATE STALK LODGING. This is the percentage of plants that did not stalk lodge (stalk breakage) at or around late season harvest (when grain moisture is between about 15 and 18%) as measured by either natural lodging or pushing the stalks and determining the percentage of plants that break below the ear.

          STKLDS=STALK LODGING SCORE. A plant is considered as stalk lodged if the stalk is broken or crimped between the ear and the ground. This can be caused by any or a combination of the following: strong winds late in the season, disease pressure within the stalks, ECB damage or genetically weak stalks. This trait should be taken just prior to or at harvest. Expressed on a 1 to 9 scale with 9 being no lodging.

          STLPCN=STALK LODGING REGULAR. This is an estimate of the percentage of plants that did not stalk lodge (stalk breakage) at regular harvest (when grain moisture is between about 20 and 30%) as measured by either natural lodging or pushing the stalks and determining the percentage of plants that break below the ear.

          STRT=GRAIN STARCH. Absolute value of starch content of the kernel as predicted by Near-infrared Transmittance and expressed as a percent of dry matter.

          STWWLT=Stewart's Wilt ( Erwinia stewartii ). A 1 to 9 visual rating indicating the resistance to Stewart's Wilt. A higher score indicates a higher resistance.

          TASBLS=TASSEL BLAST. A 1 to 9 visual rating was used to measure the degree of blasting (necrosis due to heat stress) of the tassel at the time of flowering. A 1 would indicate a very high level of blasting at time of flowering, while a 9 would have no t

分页树展主题 · 全看首页 上页
/ 3
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河