- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【原创】今天的数学(系列) -- qiaozi
共:💬199 🌺487
复 这的确有些特殊
我们现在似乎还不能断言对于某个特定的x,高斯的估计是不是可以精确到让人咂舌的地步
http://mathworld.wolfram.com/PrimeNumberTheorem.html
For small n, it had been checked and always found that π(n)<Li(n). As a result, many prominent mathematicians, including no less than both Gauss and Riemann, conjectured that the inequality was strict. To everyone's surprise, this conjecture was refuted when Littlewood (1914) proved that the inequality reverses infinitely often for sufficiently large n (Ball and Coxeter 1987; Havil 2003, p. 199). Skewes then showed that the first crossing of π(n)-Li(n) occurs before 10^(10^(10^34)),
- 相关回复 上下关系8
压缩 2 层
🙂这个系列,真是,经典! 黑皮 字102 2007-01-28 16:39:28
🤔咋回事呢?对不上啊? 1 大洋芋 字365 2007-01-28 15:53:22
😥这的确有些特殊 qiaozi 字694 2007-01-29 09:45:33
🙂高斯的估计可以无穷多次地取到精确值,这是有定理保证的。
🙂不仅是那一位,而是从那一位以后都不对了 大洋芋 字123 2007-01-29 09:49:46
🙂花。 唵啊吽 字0 2007-01-26 23:12:15
🙂可耐的素数 燕归来 字0 2007-01-26 06:52:09
🙂觉得你的表术能力超一流啊,怎么还自我谦虚一把? 老河 字300 2007-01-26 04:22:09