- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【翻译】可再生能源--消除温室效应 1序 -- hwd99
姜临建 全文翻译诺奖获得者米歇尔教授的新近一文
译者注:哈特穆特米歇尔,德国生物化学家,因研究光合作用反应中心蛋白复合体的立体结构而荣获1988年诺贝尔化学奖。米歇尔教授于今年3月12日的德国《应用化学》杂志撰文发表了“The Nonsense of Biofuels (扯淡的生物燃料)”一文,直言生物燃料的缺陷。征得米歇尔教授同意,以及德国《应用化学》杂志社的授权,现将其全文翻译如下,敬献国内读者。按照要求,在此声明本文的英文原文的详细信息是:Hartmut Michel.2012. Angewandte Chemie International Edition. 51, 2516-2518. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. DOI:10.1002/anie.201200218 德国《应用化学》杂志在其网站也将收录该文如下的中文版。
扯淡的生物燃料
Hartmut Michel 哈特穆特米歇尔 (E-mail: [email protected])
化石燃料,例如石油,煤炭和天然气,都是古代沉积的动植物和微生物的遗体演变而来。因此,从能量来源的角度讲,化石燃料其实是光合作用的间接产物。
由 此,人们自然的联想到能否利用目前存在的生物质来生产生物燃料,例如生物柴油、沼气和生物氢气。关于生物燃料的好处,我们经常读到文章讲它是一种二氧化碳 中性的能源,也就是说不会增加大气中二氧化碳的浓度,所以有助于缓解全球变暖;并且生物燃料能够降低汽油和天然气的进口量,从而降低许多国家能源的海外依 赖率。本文中,我将展开讨论生物燃料生产中的能量转化效率,并从能量转化效率的角度将生物燃料与其他的清洁能源生产进行比较,从而得出一些显而易见的结 论,并提出我个人的一些看法。
光合作用的能量转化效率(从太阳能到生物能)
首先,有必要讨论一下光合作用的能量转化效率,以及通过提高光合作用来提高生物质产量的途径。光合作用包括两个部分,一是光反应,二是暗反应。在光反应中,植物通过光合色素吸收太阳光的能量并将其聚集到反应中心。然后通过电子和质子传递合成了生物体中通用的能量载体分子三磷酸腺苷(ATP)和具有还原能力的辅酶Ⅱ(NADPH)。换言之,在这个过程中植物吸收的太阳以ATP和NADPH的形式储存起来;然后在随后的暗反应中,植物利用ATP和NADPH中所存储的太阳能将从空气中所吸收到的二氧化碳和从土壤中吸收的水合成为碳水化合物。
植物光合色素只能吸收和利用太阳辐射能量的47%,因为绿光,紫外光和红外线等波段的能量不能为光合所利用。理论上讲,合成一个NADPH分子需要8个光子的能量;但是事实上则需要9.4个光子。根据一个光子所携带的平均能量计算,光合作用在理论上仅仅能将11.8%的太阳能通过合成NADPH的形式存储。因此,11.8%也将是生物氢气生产中的太阳能转换效率的上限。
不幸的是,从能量转化效率的角度讲,光合作用在弱光条件下最高。在20%的日照强度下,光合作用即达到最高值,意味着在晴朗的夏日正午日照最强的时候,80%的太阳能竟无法为光合作用所利用。其理论上的原因很可能是由于光合反应中心的电子传递的限制造成。更为不幸的是,在高光强条件下,光合反应组件“磨损”加剧,以至于其中的一个叫做D1蛋白的组件,植物一小时得更换三次!生物学上将这种现象称为“光抑制”。显然,“光抑制”现象是对太阳能的极大浪费;但是在经历了漫漫35亿年进化后的今天,光合作用终究也没有克服“光抑制”。
暗反应的过程也同样存在严重的能量浪费。这主要是由于将二氧化碳还原成碳水化合物的RuBisCO酶,时常错误的将氧气作为反应对象,导致了大量能量被用于纠正这一错误,其比例高达植物所吸收的太阳能的1/3!另外,暗反应的高效进行需要充足的水,但是很多时候植物处于缺水状态,极大的降低能量转化效率。
考虑到光反应和暗反应中的种种限制因素,4.5%的太阳能转化效率是C3植物的光合作用的理论上限。现实的农业生产中,即使是杨树一类的速生树木,其太阳能转化效率仅仅在1%的水平。
生物燃料
根据生物燃料的单产(公斤/公顷)以及生物燃料的能量密度(焦耳/公斤),我们可以轻松的计算出生物燃料生产过程中太阳能的转化效率。其结果是,德国的生物柴油(油菜籽加工而来)含有低于0.1%的初始太阳能,生物乙醇低于0.2%,沼气大约是0.3%。值得注意的是,这些数值没有扣除生产中投入的额外能量(包括生产相应化肥和农药的能量投入,耕作、播种、施肥、喷药、收获和运输的能量投入)。这些能量投入超过了生物燃料本省能量的50%,并且主要来源于化石燃料。因此,生物燃料并非是完全二氧化碳中性。特别是,当使用小麦和玉米作为原料生产生物乙醇时,其额外的能量投入更高,以致于许多科学家认为从生物乙醇的能量中扣除额外的能量投入后,结果接近于零。可以肯定是,通过使用生物燃料来降低二氧化碳排放, 其作用杯水车薪。以整株植物为原料来生产生物燃料的第二代技术,可以将生物燃料的单产翻番,但是也需要更多的额外能量投入。例如,在“费托合成”的方法生 产合成气(一氧化碳和氢气的混合气体)时,生物源的合成气中氢气含量偏低,需要添加额外的氢气。总结说来,通观单位土地上太阳能到生物燃料的转化效率,我 的结论是,生物燃料生产的土地利用效率极其低下。巴西通过甘蔗来生产酒精也是一样。
生物燃料的替代途径
目前商业推广的太阳能发电面板的能量转化效率已经达到了15%的水平。这些电能,绝大部分都可以被有效的存储到蓄电池中。从太能转化效率来看,太阳能到蓄电池的效率是太阳能到生物燃料的150倍!并且,如果用蓄电池驱动车辆,80%的能量将转化为驱动能量;而生物燃料中只有20%的能量转化为动力。因此,从太阳能到驱动能量,光伏发电/蓄电池/电动机这一组合的太阳能利用效率是生物燃料途径的600倍!
提高光合作用的效率
诚 然,提高光合作用和生物质产量是有一定空间的。首先,通过改造光合色素来扩大有效光合波段具有理论的可能性,例如将紫外和绿光变成光合有效辐射就是一个方 向。另外一个更加现实的途径是,通过改变光子收集原件和光反应中心的布局来优化电子传递速度、降低光抑制现象以及提高光合作用的光饱和点。在暗反应方面, 目前有研究表明,红色蓝藻在碳水化合物合成中对二氧化碳结合的专一度要比植物高,从而降低了暗反应过程中的能量浪费;因此这一途径很可能也会提高高等植物 在碳水化合物合成过程中的能量利用效率。
当前生物氢气的生产主要是利用氢气合成酶在光合系统I(光反应中的两个系统之一)中富集电子的一侧合成氢气。如果能够将具有分解水能力的光合系统II也利用起来话,通过分解水来生产氢气,就可以将目前的能力转化效率提高一倍,明显提高与光伏太阳能发电的竞争能力。但是,从目前蛋白质工程的技术水平上看,其实现遥遥无期。
当 前普遍看好以蓝藻作为原料生产生物燃料的潜力。但是许多人对该体系的太阳能转化效率的估计过分乐观,有些数值甚至已经高于光合作用中能量转化的理论上限。 我承认与高等植物相比,蓝藻体系具有两大优势,一是所有细胞全部参与光合作用,二是充足的供水。但是,其限制条件也相当明显:1)光反应中的“光抑制”, 2)暗反应中的能量浪费,3)养殖和收获蓝藻以及随后的生物燃料生产过程中的巨大额外能量的投入。
展望
前面已经叙述了提高光合作用能量转化效率对提高生物燃料能量转化效率的重要意义,并且提高光合作用能量转化效率也是提高作物产量、保证全球食品安全的重要途径,但是这些都不能挑战光伏发电/蓄电池/电动机这一系统突出的高能量转换效率的地位。目前,对于光伏发电/蓄电池/电动机这一能量转换系统,其主要限制因素是当前蓄电池的电能储存能力水平较低。但是,近年来的蓄电池技术的发展取得了令人欣喜的进展;例如本杂志就报道的一种硫-锂-铁的新型电池1,其蓄电能力是普通锂电池的10倍! 该技术一旦实现商业化,那么配有该电池的电动汽车,其充电一次的行使里程将等同于传统燃油汽车一箱汽油的里程。同时,这种高效储能电池也是储存电能的一项 有效手段。在更远的将来,当常温超导材料实现商业化后,也许就不需要进行大规模的储存电能。届时,全球范围内的位于不同时区的光伏发电场将通过超导电缆连 接成一个整体,从而实现持续不断的电力供应。
建议
种 植能源植物生产生物燃料将不可避免的与粮食作物争地,同时考虑到该系统低下的太阳能利用效率,我们不应将宝贵的耕地和水资源用于生物燃料的生产。种植能源 作物将不可避免的推高粮食价格,加剧贫困人口的粮食危机。最好利用生物质的方式之一是生产高附加值的化工原料。即使利用生物质直接燃烧来取暖或者发电,也 比通过生产生物燃料来驱动汽车或取暖要好的多。生产生物燃料过程中所投入的额外的化石能源,也应该直接用于交通运输。
通 过在热带雨林地区种植棕榈树来生产生物燃料是一项非常危险的方案。因为热带雨林土壤中的泥炭将被暴露在空气中,与氧气反应形成二氧化碳,其结果是释放出的 二氧化碳将比棕榈树所吸收的二氧化碳还要多。同时,热带雨林在全球气候中起着极其重要的作用,并且也是宝贵的药用植物资源库。从降低大气二氧化碳浓度的角 度来讲,我们更应该做的是将种植能源植物的土地改造成森林;因为在1%光合太阳能转化效率条件下,一平方米的森林可以从大气中吸收2.7公斤的二氧化碳,而如果用同样一平方米的能源作物来生产生物燃料的话,将最终导致0.31 公斤的二氧化碳净排放量!
电动车一定是个人交通工具的未来。
参考文献1J. Hassoun, B. Scrosati, Angew. Chem. 2010, 122, 2421–2424; Angew. Chem. Int. Ed. 2010, 49, 2371–2374.
本文引用地址:http://blog.sciencenet.cn/blog-368242-564427.html
评论:
作者评判的标准之一是效率。从效率来谈,可以看出很多问题,比较关键的问题之一是能判断这种途径所能提供的资源量。效率低,在有限的地球表面,能生产的生物燃料总量就无法满足人类的需要。
作者提到的另一个标准是净能量,但其采用的数据是错误的。在没有化石燃料的情况下,我们可以燃烧生物质或生物质燃料生产过程中产生的废渣发电和产生热能,解决生产过程中能耗,从而能够依靠光合作用产生的生物质生产生物燃料,在巴西生成的甘蔗酒精,就利用蔗渣生成电能和热能,不仅满足甘蔗酒精生产的需要,而且输出部分电能,这就证明,我们总是可以在没有化石燃料的情况下,生产生物燃料,因为地球上能量的最终来源,除地热能和核能外,基本来自太阳。也就是说,这种方法定义的生物燃料的净能量总是正的。当然,这种生产方式下的结果是生产生物燃料的效率进一步下降。同样道理,在上述生产过程中,是不会增加二氧化碳的,作者认为生物燃料生产也许会增加二氧化碳排放也是错误的。
人类行为的唯一决定因素是经济性,或者更具体的说,是生产成本。地球表面本身存在大量生物质,其总量,从能量上来说,超过目前人类能量总需求,收集成本总是比较低,在现有的技术条件下,是有成本优势的。但由于效率限制,此外,收集成本也受很多因素影响, 例如,农业废弃秸秆的收集成本较低,而高山上的植物收集成本很高。将植物低成本转换为生物燃料,其所能提供的量,到目前为止,还是微不足道的,只能替代很少一部分化石燃料。今后的问题是,在化石燃料枯竭的情况下,那种方式能提供更低成本的能源?生物燃料肯定能占据一定份额,这主要原因比较复杂,概括起来如下:
1、 生物燃料的主要取代对象是目前汽车燃料,因为汽车燃料价格高,可以容许较高生产成本。竞争技术是电动汽车,其主要缺点是储能电池寿命短,成本高。增加储能密度,可以减小体积,降低成本。但是,该领域历史悠久,发展缓慢,很难很快发展一个替代技术,包括作者推荐的电池,其商业化还是很难的。推荐大家关注植物纤维水解产糖,酶催化糖产氢气,使用燃料电池将氢气转换为电技术,该酶促转化过程将自然界部分热能转换为化学能,能量效率为121%(以燃烧热计算)。
2、 有很大部分生物质原料成本低,例如秸秆,利用这些原料发展纤维素生物燃料成本较低,目前还需要改进技术,降低成本。但是,大多数生物质的收集成本都是很高的。今后,人类是否会为山区生物质收集,专门建设道路等?还是需要成本来回答的。另外,使用生物质生产化学品,只需较少资源,不会影响生物燃料生产。
3、 生物燃料替代其他能源,例如,替代煤炭发电,是不经济的。正如作者所说,生物质直接燃烧发电,效率肯定高于生物燃料。
4、 风能,水力发电等成本低,但资源量有限,所以,人类还必须发展太阳能。太阳能发展方向应是聚光热发电,这个方案主要使用反射镜收集能量,成本必然低于光伏电池。单晶硅电池,需要拉单晶,技术很成熟,成本是难以下降的。其他替代光伏技术的光伏电池生产的复杂性都远远超过聚光热发电所使用的反射镜,在成本上是不合算的。与太阳能相比,很大一部分生物质的收集成本较低,因而会优先开发。
5、 作者推荐的发展蓝藻资源,可以提高光合作用效率,但是,从成本上很难说有希望,原因是蓝藻含水率高达99%,预处理成本高。一种成功的技术方案必须技术简单,各工艺过程能耗低,成本低。最终很难会象现在的能源,主要集中在煤炭,石油和天然气。预计今后会出现区域性适应的生物燃料技术,这是生物质资源的来源决定的。
- 相关回复 上下关系8
🙂【翻译】可再生能源--消除温室效应 1序 51 hwd99 字4292 2010-06-26 20:23:05
🙂为什么我们可以依赖太阳能 2 hwd99 字5744 2012-07-21 09:29:56
🙂评诺奖获得者米歇尔《扯淡的生物燃料》
🙂巴西的那个例子还得仔细审查 特别是LCA 明日黄花 字44 2012-07-10 21:37:54
🙂单位面积生物对太阳的利用的效率肯定不如太阳能板 冰冻三尺 字144 2012-07-10 21:22:34
🙂植物纤维水解还是非常难的 2 北纬42度 字778 2012-07-09 18:33:45
🙂关于效率 hwd99 字194 2012-07-09 21:17:10
🙂prius发动机效率可以达到36% 北纬42度 字60 2012-07-10 11:37:32