西西河

主题:【合作】玉米种子 PH4CV专利翻译合作 -- 急风劲草

共:💬42 🌺134 🌵1
全看分页树展 · 主题 跟帖
家园 【翻译】发明进一步的具体表征 - 续

发明进一步的具体表征(Further Embodiments of the Invention ) 续

A further embodiment of the invention is a single gene conversion of PH4CV. A single gene conversion occurs when DNA sequences are introduced through traditional (non-transformation) breeding techniques, such as backcrossing (Hallauer et al, 1988). DNA sequences, whether naturally occurring or transgenes, may be introduced using these traditional breeding techniques. The term single gene conversion is also referred to in the art as a single locus conversion. Reference is made to US 2002/0062506A1 for a detailed discussion of single locus conversions and traits that may be incorporated into PH4CV through single gene conversion. Desired traits transferred through this process include, but are not limited to, waxy starch, nutritional enhancements, industrial enhancements, disease resistance, insect resistance, herbicide resistance and yield enhancements. The trait of interest is transferred from the donor parent to the recurrent parent, in this case, the maize plant disclosed herein. Single gene traits may result from either the transfer of a dominant allele or a recessive allele. Selection of progeny containing the trait of interest is accomplished by direct selection for a trait associated with a dominant allele. Selection of progeny for a trait that is transferred via a recessive allele, such as the waxy starch characteristic, requires growing and selfing the first backcross generation to determine which plants carry the recessive alleles. Recessive traits may require additional progeny testing in successive backcross generations to determine the presence of the gene of interest. Along with selection for the trait of interest, progeny are selected for the phenotype of the recurrent parent.

It should be understood that occasionally additional polynucleotide sequences or genes are transferred along with the single gene conversion trait of interest. A progeny comprising at least 98%, 99%, 99.5% and 99.9% of the genes from the recurrent parent, the maize line disclosed herein, plus containing the single gene conversion trait or traits of interest, is considered to be a single gene conversion of inbred line PH4CV.

It should be understood that the inbred could, through routine manipulation by detasseling, cytoplasmic genes, nuclear genes, or other factors, be produced in a male-sterile form. Such embodiments are also within the scope of the present claims. The term manipulated to be male sterile refers to the use of any available techniques to produce a male sterile version of maize line PH4CV. The male sterility may be either partial or complete male sterility.

This invention is also directed to the use of PH4CV in tissue culture. As used herein, the term plant includes plant protoplasts, plant cell tissue cultures from which maize plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants, such as embryos, pollen, ovules, seeds, flowers, kernels, ears, cobs, leaves, husks, stalks, roots, root tips, anthers, silk and the like. As used herein, phrases such as “growing the seed” or “grown from the seed” include embryo rescue, isolation of cells from seed for use in tissue culture, as well as traditional growing methods.

Duncan, Williams, Zehr, and Widholm, Planta (1985)165:322-332 reflects that 97% of the plants cultured that produced callus were capable of plant regeneration. Subsequent experiments with both inbreds and hybrids produced 91% regenerable callus that produced plants. In a further study in 1988, Songstad, Duncan & Widholm in Plant Cell Reports (1988), 7:262-265 reports several media additions that enhance regenerability of callus of two inbred lines. Other published reports also indicated that “nontraditional” tissues are capable of producing somatic embryogenesis and plant regeneration. K. P. Rao, et al., Maize Genetics Cooperation Newsletter, 60:64-65 (1986), refers to somatic embryogenesis from glume callus cultures and B. V. Conger, et al., Plant Cell Reports, 6:345-347 (1987) indicates somatic embryogenesis from the tissue cultures of maize leaf segments. Thus, it is clear from the literature that the state of the art is such that these methods of obtaining plants are, and were, “conventional” in the sense that they are routinely used and have a very high rate of success.

Tissue culture of maize, including tassel/anther culture, is described in U.S. 2002/0062506A1 and European Patent Application, publication 160,390, each of which is incorporated herein by reference. Maize tissue culture procedures are also described in Green and Rhodes, “Plant Regeneration in Tissue Culture of Maize,” Maize for Biological Research (Plant Molecular Biology Association, Charlottesville, Va. 1982, at 367-372) and in Duncan, et al., “The Production of Callus Capable of Plant Regeneration from Immature Embryos of Numerous Zea Mays Genotypes,” 165 Planta 322-332 (1985). Thus, another aspect of this invention is to provide cells, which upon growth and differentiation produce maize plants having the genotype and/or physiological and morphological characteristics of inbred line PH4CV.

The utility of inbred maize line PH4CV also extends to crosses with other species. Commonly, suitable species will be of the family Graminaceae, and especially of the genera Zea, Tripsacum, Coix, Schlerachne, Polytoca, Chionachne , and Trilobachne , of the tribe Maydeae. Potentially suitable for crosses with PH4CV may be the various varieties of grain sorghum, Sorghum bicolor (L.) Moench.

The advent of new molecular biological techniques has allowed the isolation and characterization of genetic elements with specific functions, such as encoding specific protein products. Scientists in the field of plant biology developed a strong interest in engineering the genome of plants to contain and express foreign genetic elements, or additional, or modifed versions of native or endogenous genetic elements in order to alter the traits of a plant in a specific manner. Any DNA sequences, whether from a different species or from the same species that are inserted into the genome using transformation are referred to herein collectively as “transgenes”. Over the last fifteen to twenty years several methods for producing transgenic plants have been developed, and the present invention, in particular embodiments, also relates to transformed versions of the claimed inbred maize line PH4CV.

Numerous methods for plant transformation have been developed, including biological and physical, plant transformation protocols. See, for example, Miki et al., “Procedures for Introducing Foreign DNA into Plants” in Methods in Plant Molecular Biology and Biotechnology , Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993) pages 67-88 and Armstrong, “The First Decade of Maize Transformation: A Review and Future Perspective” (Maydica 44:101-109, 1999). In addition, expression vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are available. See, for example, Gruber et al., “Vectors for Plant Transformation” in Methods in Plant Molecular Biology and Biotechnology , Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993) pages 89-119. See U.S. Pat. No. 6,118,055, which is herein incorporated by reference.

The most prevalent types of plant transformation involve the construction of an expression vector. Such a vector comprises a DNA sequence that contains a gene under the control of or operatively linked to a regulatory element, for example a promoter. The vector may contain one or more genes and one or more regulatory elements.

A genetic trait which has been engineered into a particular maize plant using transformation techniques, could be moved into another line using traditional breeding techniques that are well known in the plant breeding arts. For example, a backcrossing approach could be used to move a transgene from a transformed maize plant to an elite inbred line and the resulting progeny would comprise a transgene. Also, if an inbred line was used for the transformation then the transgenic plants could be crossed to a different inbred in order to produce a transgenic hybrid maize plant. As used herein, “crossing” can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.

Various genetic elements can be introduced into the plant genome using transformation. These elements include but are not limited to genes; coding sequences; inducible, constitutive, and tissue specific promoters; enhancing sequences; and signal and targeting sequences. See U.S. Pat. No. 6,118,055, which is herein incorporated by reference.

With transgenic plants according to the present invention, a foreign protein can be produced in commercial quantities. Thus, techniques for the selection and propagation of transformed plants, which are well understood in the art, yield a plurality of transgenic plants, which are harvested in a conventional manner, and a foreign protein then can be extracted from a tissue of interest or from total biomass. Protein extraction from plant biomass can be accomplished by known methods, which are discussed, for example, by Heney and Orr, Anal. Biochem. 114: 92-6 (1981).

According to a preferred embodiment, the transgenic plant provided for commercial production of foreign protein is maize. In another preferred embodiment, the biomass of interest is seed. A genetic map can be generated, primarily via conventional Restriction Fragment Length Polymorphisms (RFLP), Polymerase Chain Reaction (PCR) analysis, and Simple Sequence Repeats (SSR) and Single Nucleotide Polymorphisms (SNP), which identify the approximate chromosomal location of the integrated DNA molecule. For exemplary methodologies in this regard, see Glick and Thompson, METHODS IN PLANT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 269-284 (CRC Press, Boca Raton, 1993).

Wang et al. discuss “Large Scale Identification, Mapping and Genotyping of Single-Nucleotide Polymorphorsms in the Human Genome”, Science, 280:1077-1082, 1998, and similar capabilities will soon be available for the corn genome. Map information concerning chromosomal location is useful for proprietary protection of a subject transgenic plant. If unauthorized propagation is undertaken and crosses made with other germplasm, the map of the integration region can be compared to similar maps for suspect plants, to determine if the latter have a common parentage with the subject plant. Map comparisons would involve hybridizations, RFLP, PCR, SSR and sequencing, all of which are conventional techniques. SNP's may also be used alone or in combination with other techniques.

Likewise, by means of the present invention, plants can be genetically engineered to express various phenotypes of agronomic interest. Through the transformation of maize the expression of genes can be modulated to enhance disease resistance, insect resistance, herbicide resistance, agronomic traits as well as grain quality traits. Transformation can also be used to insert DNA sequences which control or help control male-sterility. DNA sequences native to maize as well as non-native DNA sequences can be transformed into maize and used to modulate levels of native or non-native proteins. Anti-sense technology, various promoters, targeting sequences, enhancing sequences, and other DNA sequences can be inserted into the maize genome for the purpose of modulating the expression of proteins. Exemplary transgenes implicated in this regard include, but are not limited to, those categorized below.

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河