西西河

主题:【原创】我们不谈数学(3)(草稿) -- jungleford

共:💬29 🌺112
全看分页树展 · 主题 跟帖
家园 【文摘】在数学的海洋中飘荡(二)

分析:在极限基础上建立的宏伟大厦

微积分:分析的古典时代——从牛顿到柯西

先说说分析(Analysis)吧,它是从微积分(Caculus)发展起来的——这也是有些微积分教材名字叫“数学分析”的原因。不过,分析的范畴远不只是这些,我们在大学一年级学习的微积分只能算是对古典分析的入门。分析研究的对象很多,包括导数(derivatives),积分(integral),微分方程(differential equation),还有级数(infinite series)——这些基本的概念,在初等的微积分里面都有介绍。如果说有一个思想贯穿其中,那就是极限——这是整个分析(不仅仅是微积分)的灵魂。

一个很多人都听说过的故事,就是牛顿(Newton)和莱布尼茨(Leibniz)关于微积分发明权的争论。事实上,在他们的时代,很多微积分的工具开始运用在科学和工程之中,但是,微积分的基础并没有真正建立。那个长时间一直解释不清楚的“无穷小量”的幽灵,困扰了数学界一百多年的时间——这就是“第二次数学危机”。直到柯西用数列极限的观点重新建立了微积分的基本概念,这门学科才开始有了一个比较坚实的基础。直到今天,整个分析的大厦还是建立在极限的基石之上。

柯西(Cauchy)为分析的发展提供了一种严密的语言,但是他并没有解决微积分的全部问题。在19世纪的时候,分析的世界仍然有着一些挥之不去的乌云。而其中最重要的一个没有解决的是“函数是否可积的问题”。我们在现在的微积分课本中学到的那种通过“无限分割区间,取矩阵面积和的极限”的积分,是大约在1850年由黎曼(Riemann)提出的,叫做黎曼积分。但是,什么函数存在黎曼积分呢(黎曼可积)?数学家们很早就证明了,定义在闭区间内的连续函数是黎曼可积的。可是,这样的结果并不令人满意,工程师们需要对分段连续函数的函数积分。

实分析:在实数理论和测度理论上建立起现代分析

在19世纪中后期,不连续函数的可积性问题一直是分析的重要课题。对于定义在闭区间上的黎曼积分的研究发现,可积性的关键在于“不连续的点足够少”。只有有限处不连续的函数是可积的,可是很多有数学家们构造出很多在无限处不连续的可积函数。显然,在衡量点集大小的时候,有限和无限并不是一种合适的标准。在探讨“点集大小”这个问题的过程中,数学家发现实数轴——这个他们曾经以为已经充分理解的东西——有着许多他们没有想到的特性。在极限思想的支持下,实数理论在这个时候被建立起来,它的标志是对实数完备性进行刻画的几条等价的定理(确界定理,区间套定理,柯西收敛定理,Bolzano-Weierstrass Theorem和Heine-Borel Theorem等等)——这些定理明确表达出实数和有理数的根本区别:完备性(很不严格的说,就是对极限运算封闭)。随着对实数认识的深入,如何测量“点集大小”的问题也取得了突破,勒贝格创造性地把关于集合的代数,和Outer content(就是“外测度”的一个雏形)的概念结合起来,建立了测度理论(Measure Theory),并且进一步建立了以测度为基础的积分——勒贝格(Lebesgue Integral)。在这个新的积分概念的支持下,可积性问题变得一目了然。

上面说到的实数理论,测度理论和勒贝格积分,构成了我们现在称为实分析(Real Analysis)的数学分支,有些书也叫实变函数论。对于应用科学来说,实分析似乎没有古典微积分那么“实用”——很难直接基于它得到什么算法。而且,它要解决的某些“难题”——比如处处不连续的函数,或者处处连续而处处不可微的函数——在工程师的眼中,并不现实。但是,我认为,它并不是一种纯数学概念游戏,它的现实意义在于为许多现代的应用数学分支提供坚实的基础。下面,我仅仅列举几条它的用处:

黎曼可积的函数空间不是完备的,但是勒贝格可积的函数空间是完备的。简单的说,一个黎曼可积的函数列收敛到的那个函数不一定是黎曼可积的,但是勒贝格可积的函数列必定收敛到一个勒贝格可积的函数。在泛函分析,还有逼近理论中,经常需要讨论“函数的极限”,或者“函数的级数”,如果用黎曼积分的概念,这种讨论几乎不可想像。我们有时看一些paper中提到Lp函数空间,就是基于勒贝格积分。

勒贝格积分是傅立叶变换(这东西在工程中到处都是)的基础。很多关于信号处理的初等教材,可能绕过了勒贝格积分,直接讲点面对实用的东西而不谈它的数学基础,但是,对于深层次的研究问题——特别是希望在理论中能做一些工作——这并不是总能绕过去。

在下面,我们还会看到,测度理论是现代概率论的基础。

拓扑学:分析从实数轴推广到一般空间——现代分析的抽象基础

随着实数理论的建立,大家开始把极限和连续推广到更一般的地方的分析。事实上,很多基于实数的概念和定理并不是实数特有的。很多特性可以抽象出来,推广到更一般的空间里面。对于实数轴的推广,促成了点集拓扑学(Point-set Topology)的建立。很多原来只存在于实数中的概念,被提取出来,进行一般性的讨论。在拓扑学里面,有4个C构成了它的核心:

Closed set(闭集合)。在现代的拓扑学的公理化体系中,开集和闭集是最基本的概念。一切从此引申。这两个概念是开区间和闭区间的推广,它们的根本地位,并不是一开始就被认识到的。经过相当长的时间,人们才认识到:开集的概念是连续性的基础,而闭集对极限运算封闭——而极限正是分析的根基。

Continuous function (连续函数)。连续函数在微积分里面有个用epsilon-delta语言给出的定义,在拓扑学中它的定义是“开集的原像是开集的函数”。第二个定义和第一个是等价的,只是用更抽象的语言进行了改写。我个人认为,它的第三个(等价)定义才从根本上揭示连续函数的本质——“连续函数是保持极限运算的函数”——比如y是数列x1, x2, x3, … 的极限, 那么如果 f 是连续函数,那么 f(y) 就是 f(x1), f(x2), f(x3), …的极限。连续函数的重要性,可以从别的分支学科中进行类比。比如群论中,基础的运算是“乘法”,对于群,最重要的映射叫“同态映射”——保持“乘法”的映射。在分析中,基础运算是“极限”,因此连续函数在分析中的地位,和同态映射在代数中的地位是相当的。

Connected set (连通集合)。比它略为窄一点的概念叫(Path connected),就是集合中任意两点都存在连续路径相连——可能是一般人理解的概念。一般意义下的连通概念稍微抽象一些。在我看来,连通性有两个重要的用场:一个是用于证明一般的中值定理(Intermediate Value Theorem),还有就是代数拓扑,拓扑群论和李群论中讨论根本群(Fundamental Group)的阶。

Compact set(紧集)。Compactness似乎在初等微积分里面没有专门出现,不过有几条实数上的定理和它其实是有关系的。比如,“有界数列必然存在收敛子列”——用compactness的语言来说就是——“实数空间中有界闭集是紧的”。它在拓扑学中的一般定义是一个听上去比较抽象的东西——“紧集的任意开覆盖存在有限子覆盖”。这个定义在讨论拓扑学的定理时很方便,它在很多时候能帮助实现从无限到有限的转换。对于分析来说,用得更多的是它的另一种形式——“紧集中的数列必存在收敛子列”——它体现了分析中最重要的“极限”。Compactness在现代分析中运用极广,无法尽述。微积分中的两个重要定理:极值定理(Extreme Value Theory),和一致收敛定理(Uniform Convergence Theorem)就可以借助它推广到一般的形式。

从某种意义上说,点集拓扑学可以看成是关于“极限”的一般理论,它抽象于实数理论,它的概念成为几乎所有现代分析学科的通用语言,也是整个现代分析的根基所在。

微分几何:流形上的分析——在拓扑空间上引入微分结构

拓扑学把极限的概念推广到一般的拓扑空间,但这不是故事的结束,而仅仅是开始。在微积分里面,极限之后我们有微分,求导,积分。这些东西也可以推广到拓扑空间,在拓扑学的基础上建立起来——这就是微分几何。从教学上说,微分几何的教材,有两种不同的类型,一种是建立在古典微机分的基础上的“古典微分几何”,主要是关于二维和三维空间中的一些几何量的计算,比如曲率。还有一种是建立在现代拓扑学的基础上,这里姑且称为“现代微分几何”——它的核心概念就是“流形”(manifold)——就是在拓扑空间的基础上加了一套可以进行微分运算的结构。现代微分几何是一门非常丰富的学科。比如一般流形上的微分的定义就比传统的微分丰富,我自己就见过三种从不同角度给出的等价定义——这一方面让事情变得复杂一些,但是另外一个方面它给了同一个概念的不同理解,往往在解决问题时会引出不同的思路。除了推广微积分的概念以外,还引入了很多新概念:tangent space, cotangent space, push forward, pull back, fibre bundle, flow, immersion, submersion 等等。

近些年,流形在machine learning似乎相当时髦。但是,坦率地说,要弄懂一些基本的流形算法, 甚至“创造”一些流形算法,并不需要多少微分几何的基础。对我的研究来说,微分几何最重要的应用就是建立在它之上的另外一个分支:李群和李代数——这是数学中两大家族分析和代数的一个漂亮的联姻。分析和代数的另外一处重要的结合则是泛函分析,以及在其基础上的调和分析。

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河