西西河

主题:【原创】一个测量一群人的整体聪明程度的简单办法 -- 同人于野

共:💬74 🌺324
全看分页树展 · 主题 跟帖
家园 这个题有点意思,来一个秦式解法

我觉得要分析这个问题,关键是对常人(而非理性人)的思维分析。理性人在会在思维中的虚拟博弈中无限多次权衡决策,最后达到纳什均衡。但常人之所以是常人,因为思维上无法实现这种虚拟的多次博弈。所谓直观思维,某种意义就是只进行一次虚拟决策博弈的人,并对结果凭感觉修正的结果。

一个没有学过分析的完全凭借直观感觉思维的人,他会觉得50明显有些大,40似乎也有些大,30好像感觉可以,20似乎小了一点,因此写30附近的数字可能性较大。学过一些分析有一定逻辑的人则会多一层分析,也就是多一次虚拟的决策博弈,他觉得30是常人的方法,因此值应该在20左右。随着分析能力的上升,博弈次数增加,这个数字不断减小。

但是,博弈次数的增加是以强大的思维能力为代价的。作为一个群体,思维能力是有限的。个人觉得,短时间内能进行三次虚拟博弈的人很少,也就是能走一步看三步的都可以算某种意义上的极牛的人,超过这个层次的就是天才。常人就是走一步看一步,聪明者就是走一步看两步。对金融时报的读者,能主动寄去答案的人整体应该都是聪明人,凭借他们的“直观结果”应在是20左右。考虑到某些人虽然不是天才,但他们学过纳什均衡,对无限次博弈的结果已经背在心里,所以会将这个值会凭借感觉缩小,甚至会有书呆子直接套用结果选择数字0。缩小的程度以主观上能感觉出来为限,就常人心理,一般超过10%就会认为有明显变化,所以取减小10%。

最后,按照本人的对人群思维分析,以诸葛亮的过去式方式表明:均值应该比(50*2/3*2/3)*0.9=20左右,而最可能的正确答案应是比20*2/3=13.33左右,取整为13。

总结:1.学了博弈论直接取零的书呆子因素没有有效评估,他们其实是害群之马,跟聪明人群体的均值有很大偏差,其数字明显偏小,学过博弈论但只用博弈论思考后修正结果的人应该也不会只将其减小刚刚可以明显觉察的最小值,应该偏小更多;参与者群体部分并没有完全达到二次博弈的水平,其值将偏大,所以权且认为二者抵消了。

2.本文将群体博弈层次停留在两次博弈水平,除了认为回信的读者整体并不太牛之外,还依赖一个重要的判断,多数人都容易认为其实别人不咋样的心理判断,有些小聪明的人但懂得谦虚的人并不多。

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河