- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【原创】有机太阳能电池技术简介 -- fullerene
有机半导体材料是制造有机太阳能电池的基础。
有机半导体分子结构的主要特征具有一个较长的离域共轭结构(如图1),它们可以是小分子,也可以是高分子。有机半导体材料的合成可以追述到十九世纪(例如合成聚苯胺的第一篇报道出现在1862年,但它们真正得到人们的重视还是近二三十年的事。基于其特殊性能,有机半导体材料的应用主要集中在IT设备制造(如硒鼓等)、发光设备(OLED)及有机太阳能电池上。2000年,Alan J. Heeger、Alan G. MacDiarmid和白川英树三人还因为在导电高分子研究领域的杰出贡献而获得了诺贝尔化学奖。
图1 几种典型的有机半导体材料的分子结构。其中,CuPc和PV属于小分子材料,PANi(聚苯胺)、P3HT和PEDOT:PSS属于高分子材料。它们的分子中都有较长的共轭结构。
图2 2000年诺贝尔化学奖得主:Heeger,MacDiarmid,白川英树。
有机半导体材料的特殊性能正来自其共轭结构。由于共轭结构上的pi-pi*跃迁所需能量较小,光子的能量即可将其激发——而光致电子越跃,正是光电转化过程的基础。与硅、锗等无机半导体材料类似,有机半导体材料可以分为P型和N型两种,这两种类型的材料分别对空穴和电子进行选择性传输。
虽然同样称为“半导体材料”,但有机半导体与无机半导体中的电荷传输机制有很大不同。无机半导体中,原子之间以共价键结合,形成刚性的稳定晶格以及连续的导带和价带;导带中的电子(N型)或者价格中的空穴(P型)在电场作用下定向传输就形成了电流。而有机半导体中,共轭分子之间只以范德华力相结合,相互作用弱,材料的体相中不能形成像无机半导体那样的导带、价带结构。
以P型高分子半导体材料为例,在高分子链上的一些位置,共轭结构上因缺少电子而形成带正电的极化子(Polaron)或者双极化子(Bipolaron)。这些正电荷可以在高分子链上移动,也可以通过“跳跃(Hopping)”传输到其他高分子链上。对于小分子有机半导体来说,因为分子体积小,分子内电荷的移动对材料整体电荷传输来说并不重要,分子间的电荷跳跃就决定了材料的传输能力。
如前所述,当有机半导体材料吸收光子,其pi轨道上的电子就会跃迁到pi*反键轨道上。仍然与无机半导体不同的是,被激发后的电子仍旧与所在分子紧密结合,并不能像无机半导体内的激发电子一样自由运动。此时被激发的分子中含有一个能量较高的电子,这就可以理解为一对正负电荷以库仑力结合在一起。这样的分子称为“激子(Exciton)”。激子的存在亦是有机半导体的重要特征,也是有机太阳有电池与无机太阳能电池的最显著区别,因此也有人将有机太阳能电池称为“激子型太阳能电池(Excitonic solar cells)”。
- 相关回复 上下关系5
🙂【原创】(2)有机太阳能电池的构成 17 fullerene 字2852 2009-07-24 04:44:49
🙂【原创】(1)有机半导体材料
🙂搬个板凳听课 没事聊一聊 字6 2009-07-24 04:20:39